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EXTERNAL BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL

PROBLEMS OF COMPUTATIONAL AERODYNAMICS�

SEMYON V. TSYNKOVy

Abstract. We consider an unbounded steady-state 
ow of viscous 
uid over a three-dimensional �nite body
or con�guration of bodies. For the purpose of solving this 
ow problem numerically, we discretize the governing
equations (Navier-Stokes) on a �nite-di�erence grid. The grid obviously cannot stretch from the body up to in�nity,
because the number of the discrete variables in that case would not be �nite. Therefore, prior to the discretization
we truncate the original unbounded 
ow domain by introducing some arti�cial computational boundary at a �nite
distance of the body. Typically, the arti�cial boundary is introduced in a natural way as the external boundary of
the domain covered by the grid.

The 
ow problem formulated only on the �nite computational domain rather than on the original in�nite domain
is clearly subde�nite unless some arti�cial boundary conditions (ABC's) are speci�ed at the external computational
boundary. Similarly, the discretized 
ow problem is subde�nite (i.e., lacks equations with respect to unknowns) unless
a special closing procedure is implemented at this arti�cial boundary. The closing procedure in the discrete case is
called the ABC's as well.

In this paper, we present an innovative approach to constructing highly accurate ABC's for three-dimensional 
ow
computations. The approach extends our previous technique developed for the two-dimensional case; it employs the
�nite-di�erence counterparts to Calderon's pseudodi�erential boundary projections calculated in the framework of the
di�erence potentials method (DPM) by Ryaben'kii. The resulting ABC's appear spatially nonlocal but particularly
easy to implement along with the existing solvers.

The new boundary conditions have been successfully combined with the NASA-developed production code TLNS3D
and used for the analysis of wing-shaped con�gurations in subsonic (including incompressible limit) and transonic 
ow
regimes. As demonstrated by the computational experiments and comparisons with the standard (local) methods,
the DPM-based ABC's allow one to greatly reduce the size of the computational domain while still maintaining high
accuracy of the numerical solution. Moreover, they may provide for a noticeable increase of the convergence rate of
multigrid iterations.

Key words. External 
ows, in�nite-domain problems, arti�cial boundary conditions, far-�eld linearization,
boundary projections, generalized potentials, di�erence potentials method, auxiliary problem, separation of variables.

AMS subject classi�cations. 65N99, 76M25

1. Introduction.

1.1. Preliminaries. A standard approach to solving in�nite-domain boundary-value prob-
lems on the computer involves truncation as a �rst step, prior to the discretization of the contin-
uous problem and the solution of the resulting discrete system. The truncated problem in both
continuous and discrete formulations is clearly subde�nite unless supplemented by the proper clos-
ing procedure at the outer computational boundary. The latter boundary is often called arti�cial
emphasizing the fact that it originates from the numerical limitations (the discrete system should
contain no more than a �nite number of variables) rather than original formulation. Typically, the
arti�cial boundary is introduced as an external boundary of the �nite computational domain (i.e.,
the domain covered by the grid, on which the original system is discretized). The corresponding
closing procedure at the outer boundary is called the arti�cial boundary conditions (ABC's).

In the ideal case, the ABC's would be speci�ed so that the solution on the truncated domain
coincides with the corresponding fragment of the original in�nite-domain solution. However, in
spite of the fact that di�erent ABC's methodologies have been studied extensively over the recent
two decades, the construction of such ideal (i.e., exact) ABC's that would at the same time be
computationally inexpensive, easy to implement, and geometrically universal, still remains a fairly
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remote possibility. The primary reason for that is that the exact ABC's are typically nonlocal,
for steady-state problems in space and for time-dependent problems also in time. The exceptions
are rare and, as a rule, restricted to the model one-dimensional examples. From the viewpoint
of computing, nonlocality may imply cumbersomeness and high cost. Moreover, as the standard
apparatus for deriving the exact ABC's involves integral transforms (along the boundary) and pseu-
dodi�erential operators, such boundary conditions can be obtained easily only for the boundaries
of regular shape.

On the other hand, highly accurate ABC's are most demanded in many areas of scienti�c
computing because as shown by the di�erent authors both theoretically and computationally, the
overall accuracy and performance of numerical algorithms, as well as interpretation of the numerical
results, strongly depend on the proper treatment of external boundaries. The possible range of
applications for di�erent ABC's techniques is broad. Aerodynamics, in which external problems
represent a wide class of important applications, especially when it comes to the analysis of three-
dimensional con�gurations, constitutes a fraction of this range. Besides the hydro- and aerodynamic
problems (external 
ows, duct 
ows, boundary layers, free surfaces, etc.), the entire range includes
the 
ows in porous media, �ltration, magneto-hydrodynamic 
ows, plasma (e.g., solar wind), the
problems of solid mechanics (in particular, elasticity and aeroelasticity), and the problems of wave
propagation (electromagnetic, acoustic, seismic), just to name a few.

As mentioned above, the other usual requirements of ABC's, besides minimization of the error
associated with the domain truncation, are low computational cost, geometric universality (i.e.,
applicability to a variety of irregular boundaries often encountered in real-life settings), and imple-
mentation without di�culties, in particular, readiness in combining the ABC's with the existing
(interior) solvers. The requirements of this group are typically met by many approximate local
methods that are considered an alternative to the exact ABC's as the latter are not attainable
routinely. However, the basic trend in terms of accuracy remains the following: higher accuracy
for the boundary procedure requires more of the nonlocal nature of exact ABC's to be somehow
taken into account.

In fact, almost any numerical algorithm for setting the ABC's can be thought of as a com-
promise between the two foregoing groups of requirements that in a certain sense contradict one
another. Shifting the balance towards locality and practical e�cacy often implies insu�cient ac-
curacy; shifting it to the other side, towards highly accurate nonlocal techniques, may often yield
cumbersome and all but impractical algorithms. It is not surprising, therefore, that the treatment
of external boundaries in modern production computations typically follows the �rst, local, path.
In computational 
uid dynamics (CFD), for example, only a few ABC's methodologies out of the
wide variety proposed to date can be regarded as the commonly used tools. All of them are ei-
ther based on the essential model simpli�cations, e.g., local quasi-one-dimensional treatment in the
vicinity of the arti�cial boundary, or obtained as a localization of some nonlocal ABC's. To meet
the overall accuracy requirements when using such simple boundary procedures, one often has to
choose the excessively large computational domains.

A survey of methods for setting the ABC's in di�erent areas of scienti�c computing can be
found in our work [1], as well as in the comprehensive reviews by Givoli [2, 3]. These surveys give
a comparative assessment of advantages and disadvantages of various global and local techniques,
and also point out the relations between the global and local methods.

1.2. Methods and Objectives. This paper continues our work on constructing the ABC's
that would combine the advantages relevant to both local and nonlocal approaches. The speci�c
area of applications that we are looking at is steady-state external viscous 
ows.

Previously, we have developed and implemented in practice the highly accurate ABC's for two-
dimensional case (plane geometry). Our approach is based on usage of the Calderon generalized
potentials and pseudodi�erential boundary projections [4] (see also work by Seeley [5]). The po-
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tentials and projections are actually employed in the modi�ed form proposed by Ryaben'kii; the
corresponding numerical technique used for calculating the potentials and projections is known as
the di�erence potentials method (DPM), see work by Ryaben'kii [6, 7, 8] and also the description
of the method in the book by Mikhlin, et al. [9]. The resulting DPM-based boundary conditions
appear global. As, however, will be seen, one of the principal advantages that we gain using the
DPM is that the method allows us to simultaneously meet the high accuracy standards and the
requirements of geometric universality and easiness in implementation.

The two-dimensional DPM-based ABC's have been used along with the multigrid Navier-Stokes
code FLOMG by Swanson and Turkel [10, 11, 12]. In spite of their nonlocal nature, the new boundary
conditions readily apply to the boundaries of irregular shape and appear very easy to incorporate
into the existing solver. In our computations, the DPM-based ABC's have explicitly outperformed
the standard local methods from the standpoints of accuracy, convergence rate, and robustness.
The investigated regimes range from the very low (incompressible limit) to transonic Mach numbers
and encompass both laminar and turbulent 
ows.

The aforementioned two-dimensional constructions and the corresponding numerical results
have been reported in a series of papers. In work [13], we describe the foundations of the DPM-
based approach to setting the ABC's for computation of two-dimensional external viscous 
ows
(Navier-Stokes equations). In work [14], we implement this approach along with the code FLOMG

and present some numerical results for subsonic and transonic laminar 
ows over single-element
airfoils. In work [15], we show the results of subsequent numerical experiments and propose an
approximate treatment of turbulence in the far �eld. Our work [16] delineates the algorithm for
solving one-dimensional systems of ordinary di�erence equations that arise when calculating the
generalized di�erence potentials. In work [17], we extend the area of applications for the DPM-based
ABC's by analyzing two-dimensional 
ows that oscillate in time; we also provide some solvability
results for the linearized thin-layer equations used for constructing the ABC's. In work [18], we
present a general survey of the DPM-based methodology as applied to solving external problems
in CFD, including parallel implementation of the algorithm, combined implementation of nonlocal
ABC's with multigrid, and entry-wise interpolation of the matrices of boundary operators with
respect to the Mach number and the angle of attack. Additionally, in [18] one can �nd some new
theoretical results on the computation of generalized potentials, the construction of ABC's based
on the direct implementation of boundary projections (thin-layer equations), and some numerical
results for various airfoil 
ows: laminar and turbulent, transonic and subsonic, including very low
Mach numbers.

The next natural objective after constructing the two-dimensional algorithm is the analysis
of three-dimensional steady-state 
ows. This case is undoubtedly the one most demanded by the
current practice in CFD. In work [19, 20], we outline the basic elements of the DPM-based ABC's
for steady-state viscous 
ows around the wing-shaped con�gurations and show some preliminary
numerical results for the subsonic regime. The numerical results of work [20] are obtained with the
NASA-developed production code TLNS3D by Vatsa, et al. [21]. In work [22] we further develop
the three-dimensional DPM-based algorithm and present the computational results for transonic

ows. In all cases (see [20, 22]), the DPM-based ABC's allow one to greatly reduce the size of the
computational domain (compared to the standard local boundary conditions) while still maintaining
high accuracy of the numerical solution. This actually means the overall increase of accuracy due
to the improved treatment of the arti�cial boundary; it also implies the substantial economy of the
computer resources. Moreover, the DPM-based ABC's may provide for a noticeable speedup (up
to a factor of three) of the convergence of multigrid iterations.

Below, we for the �rst time systematically describe the three-dimensional DPM-based ABC's
for calculating viscous 
ows around the wings. We address the theoretical foundations of the
approach, present the numerical algorithm with a fair amount of details, and demonstrate the
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computational results for the di�erent 
ow regimes, including the low speed 
ow and the 
ow with
the developed separation. The numerical results for the DPM-based ABC's are compared with
those obtained with the standard local method.

The material in the paper is prepared as follows. In Section 2, we formulate the problem,
describe the speci�c geometric setting for three space dimensions, provide the foundations for the
DPM-based ABC's on the continuous level, and then implement the new algorithm in the �nite-
di�erence framework. In Section 3, we �rst brie
y summarize the results of our previous numerical
experiments in two space dimensions and then report on the recent three-dimensional computations
for various 
ow regimes. Section 4 contains the conclusions.

2. External Flow.

2.1. Formulation of the Problem. We consider an unbounded steady-state 
ow of viscous

uid past a three-dimensional wing. The 
ow is uniform at in�nity. We consider both incompress-
ible and compressible formulations, in the latter case we assume that the 
uid (gas) is thermody-
namically perfect and that the free stream is subsonic. Moreover, as the 
uid is viscous and the
size of the immersed body (wing) is �nite, the 
ow limit at in�nity is a free stream.

Generally, the near-�eld 
ow is governed by the full Navier-Stokes equations. However, in
many cases (including those studied in this paper, see Section 2.2) the full system can be simpli�ed
and reduced to the so-called thin-layer equations [23], which do not contain streamwise viscous
derivatives. In particular, this simpli�cation is done in the code TLNS3D that we are using for our
numerical tests (Section 3). Moreover, for the most interesting case of turbulent 
ows the near-
�eld numerical algorithm should also involve some turbulence model, we comment on this issue in
Section 3, which is devoted to numerics.

2.1.1. Linearization. In the far �eld (i.e., far enough from the �nite immersed body), the
perturbations of the 
ow induced by the immersed body are small and we therefore linearize
the governing thin-layer equations against the constant free-stream background. Introducing the
Cartesian coordinates (x; y; z) and assuming (without loss of generality) that the free stream is
aligned with the positive x direction, we can write the dimensionless linearized equations as

Lu � C @u

@x
+D

@u

@y
+E

@u

@z
+ F

@2u

@y2
+H

@2u

@z2
+ J

@2u

@y@z
= 0;(2.1a)

where for the incompressible case

u =

2
6664

p
u

v
w

3
7775 ; C =

2
6664
0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

3
7775 ; D =

2
6664
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

3
7775 ; E =

2
6664
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

3
7775 ;(2.1b)

F =H = � 1

Re

2
6664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
7775 ; J = 0;

and for the compressible case
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u =

2
666664

�
u
v

w
p

3
777775 ; C =

2
666664

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 M0

�2 0 0 1

3
777775 ; D =

2
666664

0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 M0

�2 0 0

3
777775 ;(2.1c)

E =

2
666664

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 M0

�2 0

3
777775 ; F = � 1

Re

2
666664

0 0 0 0 0
0 1 0 0 0
0 0 4=3 0 0
0 0 0 1 1

Pr�1M0
�2 0 0 0 
 Pr�1

3
777775 ;

H = � 1

Re

2
666664

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4=3 1

Pr�1M0
�2 0 0 0 
 Pr�1

3
777775 ; J = � 1

Re

2
666664

0 0 0 0 0
0 0 0 0 0
0 0 0 1=3 0
0 0 1=3 0 0
0 0 0 0 0

3
777775 :

Here, u, v, w, and p are the perturbations of the Cartesian velocity components and pressure,
respectively, and � is the perturbation of density for the compressible case.

The derivation of equations (2.1) involves two consecutive steps. First, we introduce the di-
mensionless quantities for the original thin-layer system. To do that, in both incompressible and
compressible case we scale the velocity projections by the dimensional free-stream value of the
x-component u0. (As mentioned above, the free-stream y and z velocity components are zero:
v0=0, w0=0.) Moreover, for the incompressible 
ow we scale the original pressure by u0

2 and for
the compressible 
ow the pressure is scaled by �0u0

2, the internal energy � is scaled by u0
2 and

the viscosity � is scaled by �0. (Everywhere above, the subscript \0" denotes the corresponding
\full," i.e., \nonlinear," dimensional value.) Finally, we scale the coordinates x, y, and z by the
characteristic length L, for example, it may be the root chord or the semi-span of the wing (see
Section 2.2). For the compressible 
ow, we also have to use the equation of state of the perfect gas
to eliminate the internal energy from the original system.

After the nondimensionalization, we represent each quantity (velocities and pressure for the
incompressible case and velocities, pressure, and density for the compressible case) as a sum of the
constant background value (free stream) and the small perturbation and retain in the equations
only the �rst-order terms with respect to the perturbations. (Note, in the incompressible case only
the gradient of the pressure is involved in the original system, therefore the actual value of the
background constant for the pressure does not matter.) In so doing, we arrive at equations (2.1a),
(2.1b) for the incompressible 
ow and equations (2.1a), (2.1c) for the compressible 
ow. Both in
(2.1b) and (2.1c) Re is the Reynolds number (in the turbulent case, it is an e�ective far-�eld value,

see [15]); in addition, for the compressible 
ow (see (2.1c))M0 = u0= (
p0=�0)
1=2 is the free-stream

Mach number (always M0 < 1), Pr is the Prandtl number, and 
 is the ratio of speci�c heats.
Note, for the incompressible case it is clear that the di�erential equations for the small per-

turbations are linear. For the compressible case, however, this fact may require some additional
justi�cation, see Section 2.1.2.

The system (2.1) describes the 
ow in the far �eld. In both incompressible and compressible
cases, it is supplemented by the boundary condition

u �! 0; as r � (x2 + y2 + z2)1=2 �! +1;(2.2)
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which means that all the perturbations vanish at in�nity, or equivalently, the 
ow approaches the
free stream.

Let us mention, that the matrices C;D;E;F ;H of (2.1b) are symmetric, whereas the matrices
C;D;E;F ;H of (2.1c) are not. As the symmetric form of the matrices may sometimes be more
convenient for the analysis and also more suitable for the numerical calculations (especially when
the Mach number M0 is low), one can use the transformation proposed by Abarbanel and Gottlieb
in work [24] to simultaneously reduce C;D;E;F ;H of (2.1c) to the symmetric (and some of the
matrices to the diagonal) form. Speci�cally, introducing the non-degenerate matrix S,

S =

2
666664

p

M0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0�p


M0
��1 0 0 0

p

 � 1(

p

M0)�1

3
777775 ;(2.3a)

with the inverse

S�1 =

2
666664

(
p

M0)

�1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

�(p
(
� 1)M0)
�1 0 0 0

p

 � 1(

p

M0)

�1

3
777775 ;(2.3b)

we have instead of (2.1c)

~C = S�1C S =

2
666664

1 (
p

M0)

�1 0 0 0
(
p

M0)

�1 1 0 0
p

 � 1(

p

M0)

�1

0 0 1 0 0
0 0 0 1 0
0

p

 � 1(

p

M0)

�1 0 0 1

3
777775 ;(2.4)

~D = S�1DS =

2
666664

0 0 (
p

M0)�1 0 0

0 0 0 0 0
(
p

M0)�1 0 0 0

p

 � 1(

p

M0)�1

0 0 0 0 0
0 0

p

 � 1(

p

M0)�1 0 0

3
777775 ;

~E = S�1ES =

2
666664

0 0 0 (
p

M0)�1 0

0 0 0 0 0
0 0 0 0 0

(
p

M0)

�1 0 0 0
p

 � 1(

p

M0)

�1

0 0 0
p

 � 1(

p

M0)�1 0

3
777775 ;

~F = S�1F S =

2
666664

0 0 0 0 0
0 1 0 0 0
0 0 4=3 0 0
0 0 0 1 1
0 0 0 0 
 Pr�1

3
777775 ;

~H = S�1H S =

2
666664

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4=3 1
0 0 0 0 
 Pr�1

3
777775 ;

~J = S�1J S = J :
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The symmetric form ~C; ~D; ~E; ~F ; ~H ; ~J (see (2.4)) of the system matrices appears useful when
analyzing the incompressible limit M0 �! +0. A detailed study of the compressible Euler and
Navier-Stokes equations as the Mach number approaches zero can be found in work [25], as well as
in work [26, 27].

2.1.2. Asymptotic Methods | Linear vs. Nonlinear. In connection with the linearized
model proposed above for the far �eld, especially as it regards the compressible case, we will discuss
here one group of the ABC's methods that are widely used in computations. These methods employ
some asymptotic form of the far-�eld solution for closing the system of equations to be solved inside
the computational domain. Typically, this approximate asymptotic form can be obtained as a few
leading terms of the series (or asymptotic series) that represents the solution in the far �eld. The
corresponding ABC's most often appear local.

The idea of the this type was employed, for example, by Sa and Chang in work [28] to set
the ABC's for vorticity when integrating the incompressible Navier-Stokes equations around a
cylinder. Burkhart in [29] and Burkhart et al. in [30] derive an asymptotic expansion for the �nite-
di�erence fundamental solution of the three-dimensional Laplace operator on a Cartesian grid and
then use a few leading terms of this expansion to set the ABC's for an external 
ow problem that
is solved within the full-potential framework. Wubs, Boerstoel, and Van der Wees in [31] use a
Fourier representation of the far-�eld solution to the two-dimensional Laplace equation to calculate
a potential 
ow around an airfoil. The ABC's [31] are again derived from the �rst few leading
terms of the expansion; as the arti�cial boundary approaches the airfoil, more terms are required
to maintain the accuracy. Finally, the so-called point-vortex model, which has been proposed by
Thomas and Salas in an earlier work [32] and which is extensively used in the today's CFD is also
based on the idea of asymptotics. Speci�cally, the �rst leading term of the far-�eld expansion for
the linearized 
ow potential is used to calculate the velocity projections at the external boundary
when computing the two-dimensional compressible 
ows. This leading term is proportional to the
circulation of the 
ow.

The asymptotic methods may often require the explicit knowledge of the coe�cients that multi-
ply the corresponding terms in the expansion (the ones that are used in the far-�eld representation).
In CFD, these coe�cients are typically obtained through the boundary conditions on the surface
of the immersed body. For example, the value of circulation for the point-vortex model [32] is
proportional to the lift, which is calculated by integrating the pressure along the surface. There is
also another way of using the asymptotics for setting the far-�eld ABC's. It has been proposed by
Bayliss and Turkel in work [33, 34, 35] and by Bayliss, Gunzburger, and Turkel in work [36] and
does not require the explicit knowledge of the coe�cients. Instead, the authors of [33, 34, 35, 36]
develop a set of special local di�erential relations that identically cancel out the prescribed number
of leading terms in the corresponding series; these relations can obviously serve as the ABC's.
However, they are typically of a high order even if the order of the original equation (system) is
low.

As a rule, the asymptotic ABC's methods are derived on the basis of the linear (or linearized)
equations (apparently because it is easier to study the convergence of the corresponding series). In
certain cases, however, one takes into account the nonlinear corrections as well. For example, when
analyzing the transonic limit M0 �! 1 for the small perturbations of the velocity potential in the

ow of compressible gas, some second-order terms should formally be retained in the di�erential
equation along with the �rst-order terms (see, e.g., the book by Cole and Cook [37]). This leads
to the nonlinear K�arm�an{Guderley equation rather than to the linear Prandtl{Glauert equation
(the latter is valid for smaller M0). For two-dimensional external 
ows (e.g., 
ows around airfoils)
described by the K�arm�an{Guderley equation, it turns out that the nonlinear corrections to the
leading linear lift-based term � ���=2� in the far-�eld expansion of the potential (� is the 
ow
circulation, � is the polar angle) contain the terms proportional to log r=r (r is the polar radius),
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which formally decay slower than the next linear term � 1=r as r �! +1. This circumstance,
in particular, gave reasons to Drela in work [38] and Giles and Drela in work [39] to include the
nonlinear correction terms in their simpli�ed far-�eld potential model for the compressible airfoil
calculations. (Note, the entire series that represents the behavior at in�nity of the potential function
of a two-dimensional subsonic compressible 
ow has been accurately constructed by Ludford in work
[40] using the hodograph plane techniques.)

Our two-dimensional DPM-based approach of [13], however, uses the full 
ow system; we never
introduce the potential and we always consider only the linearized far-�eld 
ow. The accuracy and
performance of the corresponding nonlocal ABC's are demonstrated by the numerical experiments,
see our work [14, 15, 18]. These accuracy and performance are typically better than those of the
standard methods. However, we should say that the investigated Mach numbers have never come

really close to the transonic limit, we have always run our calculations in the range M0 <� 0:8.

Generally, retaining the second-order nonlinear terms in the compressible far-�eld model for two-
dimensional 
ows is most relevant to the case of Mach numbers close to one, M0 �! 1, whereas

the linear theory works best for � �
�
1�M0

2
�3=2

(see [37]), here � can be regarded as, e.g., the

airfoil thickness.
The situation with the compressible far-�eld expansion for three space dimensions is entirely

di�erent. Let us consider here the K�arm�an{Guderley equation (see [37])

@2�

@x2
+
@2�

@ŷ2
+
@2�

@ẑ2
=


 + 1

K

@�

@x

@2�

@x2
:(2.5)

In equation (2.5), � is the perturbation of the full potential � of the 
ow around a thin three-
dimensional wing so that

1

u0

@�

@x
= 1 + �2=3

@�

@x
;

1

u0

@�

@y
= �

@�

@~y
;

1

u0

@�

@z
= �

@�

@~z
;

~y = �1=3y; ~y = �1=3y;

(2.6a)

� is the wing thickness (� �! +0 along with M0 �! 1 in the transonic limit),

K =
1�M0

2

�2=3
(2.6b)

is the parameter of transonic similarity (the true linear theory corresponds to big values of K, see,
e.g., [41]), the additional coordinate transformation is given by

ŷ =
p
K~y; ẑ =

p
K~z;(2.6c)


 is still the ratio of speci�c heats, and the free stream is again aligned with the positive x direction.
The far-�eld expansion for � in the linear theory, i.e., when the right-hand side (RHS) of

equation (2.5) is omitted, starts with the horseshoe vortex (see, e.g., [42])

�1 =
ŷ

ŷ2 + ẑ2

�
1 +

x

r̂

�
=

(1 + cos �) cos'

r̂ sin �
;(2.7a)

where the spherical coordinates are introduced as
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x = r̂ cos �; ŷ = r̂ sin � cos'; ẑ = r̂ sin � sin':

Expression (2.7a) obviously has a singularity in the wake, i.e., along the line � = 0. Clearly, the
source term of order 1=r̂ is not present in the far-�eld expansion because the surface of the wing is
assumed closed. Therefore, the next term in the linear expansion should be proportional to 1=r̂2.
We consider its general form �2 =

P
l;m r̂�l�1Y m

l (�; '), l = 1, m = �1; 0; 1, where the spherical

functions Y m
l (�; ') are given by Y m

l (�; ') = Pm
l (cos �)exp(im'), and Pm

l (�) = (1��2)m=2P(m)
l (�),

m � l, here Pl(�) = 1

2ll!

dl

d�l
(�2 � 1)l are the Legendre polynomials. Using the real representation,

we obtain the general form of the second term as

�2 = a
x

r̂3
+ b

ŷ

r̂3
+ c

ẑ

r̂3
= a

cos �

r̂2
+ b

sin � cos'

r̂2
+ c

sin � sin'

r̂2
;(2.7b)

where a, b, and c are some arbitrary constants.
To obtain the nonlinear corrections due to the RHS of equation (2.5), one can substitute the

linear terms (2.7) into this RHS and solve the resulting Poisson equation. For the purpose of
simple demonstration we will do that separately for �1 of (2.7a) and �2 of (2.7b) although the
similar procedure can be carried out for any weighted sum of �1 and �2.

Substitution of (2.7a) into the RHS of equation (2.5) yields

1

r̂2
@

@r̂

�
r̂2
@�

@r̂

�
+

1

r̂2 sin �

@

@�

�
sin �

@�

@�

�
+

1

r̂2 sin2 �

@2�

@'2
= �
 + 1

K

3 cos � sin2 � cos2'

r̂5
:(2.8)

Note, the singularity of the potential (2.7a) in the wake (along � = 0) vanishes with di�erentiation.
The RHS of equation (2.8) can now be expanded with respect to the spherical functions; the
corresponding �nite Fourier series is, in fact, given by

cos � sin2 � cos2' =
1

5
Y 0
1 (�; ')�

1

5
Y 0
3 (�; ') +

1

30
Y 2
3 (�; '):(2.9)

Taking into account that the spherical functions Y m
l are actually the eigenfunctions of the Beltrami

operator on the sphere (two last terms on the left-hand side of equation (2.8)), we can separate
the variables in equation (2.8) and reduce it to the �nite family of one-dimensional equations with
respect to the Fourier transformation �̂l;m � �̂:

d2�̂

dr̂2
+

2

r̂

d�̂

dr̂
� l(l+ 1)

r̂2
�̂ =

Al

r̂k+2
; l = 1; 3; k = 3:(2.10)

The constants Al in (2.10) are, of course, inverse proportional to the transonic similarity parameter
K of (2.6b), they also involve the coe�cients of the expansion (2.9). The homogeneous counterpart
to equation (2.10) has two linearly independent solutions, �̂I(r̂) = r̂l and �̂II(r̂) = r̂�l�1. The
solution �̂(r̂) to the nonhomogeneous equation (2.10) can therefore be found in the form

�̂(r̂) = cI(r̂)�̂I(r̂) + cII(r̂)�̂II(r̂) � cI(r̂)r̂
l + cII(r̂)r̂

�l�1;(2.11a)

where the functions cI(r̂) and cII(r̂) satisfy the system
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2
64

�̂I(r̂) �̂II(r̂)

d�̂I(r̂)

dr̂

d�̂II(r̂)

dr̂

3
75 d

dr̂

"
cI(r̂)

cII(r̂)

#
=

2
64 0

Al

r̂k+2

3
75 :(2.11b)

Solving (2.11b) with respect to cI(r̂) and cII(r̂) yields

cI(r̂) � 1

r̂l+k
; cII(r̂) � 1

r̂�l+k�1
(2.12)

provided that l+ k 6= 0 and �l+ k 6= 1, respectively. As both of the latter conditions are met for l
and k from (2.10), we substitute the expressions (2.12) into equality (2.11a) and �nally obtain the
nonlinear correction due to the horseshoe potential of (2.7a) as

�1NL
� 1

r̂3
:(2.13a)

The same type of derivation can be performed for the doublet potential of (2.7b). Substituting
�2 of (2.7b) into the RHS of equation (2.5) one obtains the expression proportional to r̂�7 instead
of r̂�5 in the RHS of equation (2.8). The expansion analogous to (2.9) will now contain Y m

l for
l = 1; 3; 5, and after the separation of variables the equation (2.10) will also change accordingly,
we will have k = 5 instead of k = 3 and add l = 5 to the set of wavenumbers. As a result, the
nonlinear correction due to the potential �2 of (2.7b) can be shown to have the form

�2NL
� 1

r̂5
:(2.13b)

We see that the nonlinear correction �1NL
of (2.13a) decays at in�nity two orders of magnitude

faster than the term �1 of (2.7a) that it originates from. Analogously, the nonlinear correction
�2NL

of (2.13b) decays at in�nity three orders of magnitude faster than the corresponding term
�2 of (2.7b). We therefore conclude, that unlike the two-dimensional case, the transonic nonlinear
corrections are not required when analyzing the far �eld for three space dimensions. This conclusion
basically coincides with the results of [37] saying that the far �eld around a thin three-dimensional
�nite-span wing is essentioally linear. In other words, we have shown that the small perturbations of
the velocity potential of a three-dimensional compressible 
ow are described by the linear formulas
in the far �eld even when M0 �! 1. This justi�es the far-�eld linearization of Section 2.1.1.

2.1.3. Outline of the Algorithm. Having introduced the linearized model (2.1), (2.2) for
the far �led (see Section 2.1.1) we now obtain the combined problem: nonlinear inside the �nite
computational domain and linear on its in�nite exterior. The nonlinear and linear parts of the
problem are, of course, not independent. The interior and exterior solutions should match at the
arti�cial boundary and consequently, the combined problem must be solved as a whole. Therefore,
at the �rst glance the new problem is no easier than the original one from the standpoint of
solving it numerically because it is still formulated on the unbounded domain. However, using the
methodology of Calderon's projections and the DPM [6, 7, 8], the exterior linear problem can be
e�ectively reduced to a certain nonlocal relation formulated on the arti�cial boundary. The latter
relation can serve as the desired ABC's.

More precisely, we introduce a special space of (vector-)functions at the arti�cial boundary,
it will be called the space of clear traces [6, 7, 8]. We also de�ne a (pseudodi�erential) projec-
tion operator that maps the space of clear traces onto itself. This operator will be analogous to
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Calderon's boundary projections. Under certain conditions, one can show that the element of the
space of clear traces is actually a trace of some solution to the problem (2.1), (2.2) on the exterior
domain if and only if this element belongs to the image of the aforementioned projection operator.
The latter condition can, in fact, be written in the form of Calderon's boundary equation or the
so-called boundary equation with projection (BEP) [6, 7, 8]. Its solutions will provide us with the
complete boundary classi�cation (in terms of the appropriate traces) of all those and only those
u's (see (2.1b) and (2.1c)) that solve (2.1), (2.2) outside the computational domain.

As we intend to set the ABC's for the discretized 
ow problem, the foregoing boundary classi�-
cation of the exterior solutions will also be obtained in the discrete framework using the concept of
�nite-di�erence clear traces and �nite-di�erence counterparts to Calderon's projections and gener-
alized potentials [6, 7, 8]. Once we are able to calculate the image of Calderon's projection (i.e., the
result of application of this operator to every given input), we can actually set the ABC's in a few
di�erent ways. Earlier (see [13, 14, 15]) we have been solving the corresponding BEP using some
variational approach. Below, we follow the di�erent path, namely, we implement the boundary
projections directly as proposed �rst in [18]. In fact, applying the Calderon operator we update
the missing boundary values on every cycle of the iteration procedure that is employed inside the
computational domain.

2.2. Geometric Issues and the Basics of the Discrete Algorithm. The speci�c con�g-
uration of domains that we will be dealing with hereafter is shown in Figure 2.1.

issal. 

y

z

x

Γ

Γ1

Fig. 2.1. Schematic geometric setup; the wing on the left is enlarged.

The actual structure displayed in this �gure is the well-known test wing ONERA M6 (the
wingtip is blunted, it is in the \hidden" area on the �gure). The wing stretches span-wise along
the Cartesian axis z and is assumed symmetric with respect to the plane z = 0. The uniform at
in�nity 
uid 
ow is coming along the positive x direction, which together with the symmetry of
the wing implies the symmetry of the entire 
ow pattern with respect to z = 0.
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The latter symmetry, in turn, means that the components ui of u, i = 1; . . . ; 4 for (2.1b) and
i = 1; . . . ; 5 for (2.1c) (note, the x projection of the velocity vector u � ui for i = 2) satisfy the
following set of equalities for i 6= 4:

ui(�; jzj) = ui(�;�jzj)

@ui

@x
(�; jzj) = @ui

@x
(�;�jzj); @ui

@y
(�; jzj) = @ui

@y
(�;�jzj); @ui

@z
(�; jzj) = �@u

i

@z
(�;�jzj);

@2ui

@y2
(�; jzj) = @2ui

@y2
(�;�jzj); @2ui

@z2
(�; jzj) = @2ui

@z2
(�;�jzj); @2ui

@y@z
(�; jzj) = � @2ui

@y@z
(�;�jzj);

(2.14a)

which, in particular, implies

@ui

@z
(�; 0) = 0;

@2ui

@y@z
(�; 0) = 0; for i 6= 4;(2.14b)

and the following set of equalities for i = 4:

ui(�; jzj) = �ui(�;�jzj)

@ui

@x
(�; jzj) = �@u

i

@x
(�;�jzj); @ui

@y
(�; jzj) = �@u

i

@y
(�;�jzj); @ui

@z
(�; jzj) = @ui

@z
(�;�jzj);

@2ui

@y2
(�; jzj) = �@

2ui

@y2
(�;�jzj); @2ui

@z2
(�; jzj) = �@

2ui

@z2
(�;�jzj); @2ui

@y@z
(�; jzj) = @2ui

@y@z
(�;�jzj);

(2.15a)

which yields

ui(�; 0) = 0;
@ui

@x
(�; 0) = 0;

@ui

@y
(�; 0) = 0;

@2ui

@y2
(�; 0) = 0;

@2ui

@z2
(�; 0) = 0; for i = 4:

(2.15b)

Relations (2.14), (2.15) will be used in Section 2.4 when constructing the discretization for the
linearized system.

The 
ow equations are integrated numerically on a curvilinear grid generated around the wing.
The grid shown in Figure 2.1 is a one-block C-O type grid; it this paper we will use the grids of this
type only. The surface designated � on Figure 2.1 is actually the external set of nodes of the C-O
grid, i.e., the arti�cial boundary. Henceforth, we will also need the notation Din for the interior of
�, i.e., for the �nite computational domain, and the notation Dex for the in�nite exterior of �.

The curve �1 � Dex (see Figure 2.1) actually represents the set of ghost nodes (or centers of the
ghost cells for the case of �nite-volume discretization), it can also be thought of as the outermost
set of nodes of the original C-O grid; the surface � then becomes the penultimate set of nodes. We
will further assume that the linearization (2.1) is valid in Dex, i.e., outside �, so that �1 belongs
already to the linear zone. The actual admissible size of Din such that the perturbations can be
considered su�ciently small and therefore the assumption of the linearity in Dex would hold, is, of
course, unknown ahead of time. We verify the validity of linearization in Dex a posteriori, through
the series of numerical experiments, see Section 3.
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Clearly, when the stencil of the scheme used inside Din is applied to any node from �, it
generally requires some ghost cell data. Note, for the second-order central di�erence schemes
(like those employed in the code FLOMG, see [10, 11, 12] and TLNS3D, see [21]) the consideration
of only one layer of ghost cells �1 is su�cient, but the case when the stencil is more extensive
and consequently, more ghost cells are required, can be treated similarly. Unless the missing
ghost cell data are provided, i.e., obtained with the help of the ABC's, the discrete system solved
inside the computational domain appears subde�nite, in other words, it has less equations than
it has unknowns. As mentioned in Section 2.1.3, the apparatus of the DPM [6, 7, 8] gives us the
complete boundary characterization of the traces of exterior linear solutions. Since the linear zone
Dex stretches from � to in�nity and contains �1, the following approach appears most natural
for setting the ABC's. First, the data provided from inside Din are subjected to the projection
operation. The resulting projection will by de�nition admit a complement on Dex that solves
(2.1), (2.2). The latter complement can be calculated in the form of a generalized potential and
considered on �1. Altogether, this procedure yields the missing relations between the values of the
solution on � and �1. In other words, it provides for a desired closure to the discrete system solved
inside Din, or the ABC's. Typically, the solution algorithm inside Din involves some pseudo-time
iterations (see Section 3); then, the foregoing closing procedure is applied on every iteration cycle,
more precisely, every time the ghost cells need to be updated in order to advance the next time
step.

We now proceed to the description of the generalized potentials and boundary projections, as
well as their �nite-di�erence counterparts, that are required for setting the DPM-based ABC's.
Note, if the potentials and projections are calculated for exactly the operator L of (2.1a) that
operates on the functions u de�ned on the entire in�nite domain Dex and satisfying boundary
conditions (2.2), then the corresponding BEP appears equivalent to the original linear problem
(2.1), (2.2) (see [6, 7, 8]). We, however, will have to introduce some simpli�cations and to carry
out the DPM-based procedure for a certain approximation of problem (2.1), (2.2) (see Sections 2.3
and 2.4) rather than for this problem itself. Nonetheless, the corresponding approximate solution
can be made as close to the original one as initially prescribed (see [18] and below for more detail).
Therefore, within the accuracy of far-�eld linearization the resulting ABC's can be made as close
to the exact ones as desired.

2.3. Foundations of the DPM-based ABC's. Here, we will �rst formulate and solve the
so-called auxiliary problem (AP) for the inhomogeneous version of system (2.1) with boundary
conditions (2.2). This AP will be the central element of our construction of Calderon's generalized
potentials and boundary projections. In fact, the solution of the AP can be thought of as a
substitute for the convolution with the fundamental solution in classical potential theory.

2.3.1. In�nite-Domain AP. Let us consider a compactly supported vector-function
�
f i
	 �

f � f(x; y; z), supp f � Din, of dimension four (i = 1; . . . ; 4 for (2.1b)) or �ve (i = 1; . . . ; 5 for
(2.1c)); in the meantime, we do not specify the concrete form of f . This function f will be the
right-hand side for the AP. The AP is initially formulated on the entire space R3; namely, we will
be looking for a solution u of system

Lu = f(2.16)

that meets boundary condition (2.2) at in�nity.
Note, when discussing regular solutions below we assume, if necessary, that the functions

involved can be represented in the form of their Fourier integrals.
Proposition 2.1. Let f be a compactly supported distribution, f 2 D0(R3), supp f � Din.

Then, system (2.16), (2.1b) is solvable in the Schwartz space D0(R3).
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To justify proposition 2.1, we use the standard methodology based on application of the Fourier
transform over the entire R3 (see, e.g., [43]). Clearly, to obtain the solvability of (2.16) in D0(R3)
it is su�cient to make sure that the inverse symbol of the operator L (see (2.1)) belongs locally to
L1(R

3). Denoting the dual (Fourier) variables to (x; y; z) by (�; �; �), we can write the symbol Q
of L as

Q = i�C + i�D+ i�E � �2F � �2H � ��J :(2.17)

Then, the entrees ~qjk = ~qkj , j = 1; . . . ; 4, k = 1; . . . ; 4, of the inverse symbol Q�1 for the incom-
pressible case (2.1b) are given by

~q11 =
i� + �2+�2

Re

%2
; ~q12 =

�i�
%2

; ~q13 =
�i�
%2

; ~q14 =
�i�
%2

;

~q22 =
�2 + �2�

i� + �2+�2

Re

�
%2
; ~q23 =

����
i� + �2+�2

Re

�
%2
; ~q24 =

����
i� + �2+�2

Re

�
%2
;

~q33 =
�2 + �2�

i� + �2+�2

Re

�
%2
; ~q34 =

����
i� + �2+�2

Re

�
%2
;

~q44 =
�2 + �2�

i� + �2+�2

Re

�
%2
;

(2.18)

where %2 = �2 + �2 + �2. From (2.18) one can see that Q�1 has only one real singularity, it is
located in the origin, (�; �; �) = (0; 0; 0). Clearly, all ~q1k , k = 1; . . . ; 4, are absolutely integrable
near the origin and consequently, ~q1k 2 Lloc

1 (R3) for k = 1; . . . ; 4. As for the other ~qjk, we introduce
the polar coordinates: � = % cos�, � = % sin � cos', � = % sin � sin', 0 � � � �, 0 � ' < 2�, and
notice that for su�ciently small %'s

%2

Re2
� cos2 � +

%2

Re2
sin4 �; 0 � � � �:(2.19)

For j = 2; . . . ; 4 and k = j; . . . ; 4, estimate (2.19) immediately yields

j~qjk j � const
%2���i� + �2+�2

Re

��� %2 =
const

%
�
cos2 � + %2

Re2 sin
4 �
�1=2 � const

Re

%2
;

and we therefore conclude that ~qjk 2 Lloc
1 (R3) for all j = 1; . . . ; 4, k = 1; . . . ; 4. Thus, we have

shown that proposition 2.1 does hold for the incompressible case (see (2.1b)). Note, similar proof
for the two-dimensional compressible case can be found in [17].

Proposition 2.2. Let f 2 L1(R3). Then, equation (2.16), (2.1b) may have no more than one
regular solution u 2 D0(R3) that vanishes at in�nity, i.e. satis�es (2.2).

Indeed, the Fourier transformation f̂ of the RHS is continuous on R3 in this case. The regular

solution u to (2.16), (2.2) is given by the inverse Fourier transform: u =
�
Q�1f̂

�
�. Since Q�1f̂

has only one real singularity (in the origin), then any other solution can di�er from u by no more
than an inverse Fourier transformation of a distribution concentrated in the origin. The latter
can be nothing but a sum of �-functions and their derivatives, which correspond to polynomials
after the Fourier transform. Therefore, proposition 2.2, which is actually a statement of conditional
uniqueness, has been justi�ed. Note that we have been able to establish uniqueness so easily because
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the inverse symbol Q�1 has only one isolated real singular point. This, for example, would not be
the case for the Euler equations, which can be obtained by formally letting Re�1 = 0.

Proposition 2.3. Let f be compactly supported and f 2 L2(R3). Then, equation (2.16),
(2.1b) has a solution u = uI + uII , where uI is in�nitely smooth on R3, i.e., uI 2 C1(R3), and
satis�es boundary condition (2.2), and uII 2 L2(R3). Moreover, for any � > 0, one can always

choose the representation u = uI + uII so that



uII




L2(R3)
< �.

Consider a partition of unity 1 = g0+ g�0, where both (scalar) functions g0 and g�0 are in�nitely
smooth on R3, g0 � 1 on a ball UR0

centered in the origin with the �xed radius R0, and g0 � 0
outside a bigger ball UR0+� with the radius R0 + �, � > 0. Clearly, as f 2 L2(R

3) and f is
compactly supported, then f 2 L1(R

3). The solution u is given by the inverse Fourier transform:

u =
�
Q�1f̂

�
� =

�
Q�1g0f̂

�
�+

�
Q�1g�0f̂

�
�. The �rst term of the foregoing sum, uI �

�
Q�1g0f̂

�
�,

is obviously an inverse Fourier transformation of a function from L1(R
3). Moreover, for any poly-

nomial P � P (�; �; �): PQ�1g0f̂ 2 L1(R
3). Therefore, uI 2 C1(R3) and uI meets boundary

condition (2.2). The second term, uII �
�
Q�1g�0f̂

�
�, is an inverse Fourier transformation of a

function from L2(R
3) because f̂ 2 L2 (R

3 ) and Q�1 is bounded when % �! +1 as can be clearly
seen from expressions (2.18). (The Fourier transform in this case can be regarded in the sense
of Plancherel.) Therefore, uII 2 L2(R

3). Clearly, both uI and uII depend on the choice of the
partition of unity 1 = g0+ g�0, i.e., on the choice of R0. Since û

II � Q�1g�0f̂ 2 L2 (R
3 ) for any R0,

then



Q�1g�0f̂





L2(R3)

�! 0 as R0 �! +1 and consequently,



uII




L2(R3)
�! 0 as R0 �! +1.

This concludes the proof of proposition 2.3.

Proposition 2.4. Let f̂ be the Fourier transformation of f on R3 and f̂ 2 L1(R
3). Then,

equation (2.16), (2.1b) has a continuous solution u on R3 that meets boundary condition (2.2).

The statement of proposition 2.4 is obvious as in this case Q�1f̂ 2 L1(R
3).

In our further constructions, however, we will not always be able to guarantee the inclusion
f̂ 2 L1(R

3) as required in proposition 2.4. Typically, suppf � Din and we may also assume that f
is su�ciently smooth on Din. On the other hand, we do not generally require the di�erentiability
of f on the entire R3; f and its derivatives may have the discontinuities (of the �rst kind) on
the surface � � @Din. For any RHS f of this type, we will make sure that when we successively
approximate f by the smooth functions fn the corresponding smooth solutions un in a certain
sense converge to the solution u guaranteed by proposition 2.3.

Consider a sequence fn, n = 1; 2; . . ., of in�nitely smooth compactly supported onDin functions
that converges to f in the sense of L2(Din): kf � fnkL2(Din)

� kf � fnkL2(R3) �! 0 as n �! +1.
(The sequence fn always exists because f 2 L2(Din) and the space D(Din) of all compactly
supported in�nitely smooth functions on Din is everywhere dense in L2(Din), see, e.g., [43].) The
Fourier transformation f̂n of any fn 2 D(Din) is in�nitely smooth on R3 and decays at in�nity faster
than any power of r�1 with all its derivatives. (Fourier transform in the sense of Plancherel obviously
coincides here with the standard transform in the sense of L1.) Therefore, for any polynomial
P � P (�; �; �): PQ�1f̂n 2 L1(R3) and consequently, the solution un to the system Lun = fn is
also in�nitely smooth onR3, un 2 C1(R3), and satis�es boundary condition (2.2). We now consider

the same partition of unity 1 = g0 + g�0 as used when proving proposition 2.3. un =
�
Q�1f̂n

�
� =

uIn + uIIn , where uIn =
�
Q�1g0f̂n

�
� and uIIn =

�
Q�1g�0f̂n

�
�; clearly, both uIn; u

II
n 2 C1(R3)

and both uIn; u
II
n �! 0 when r �! 1. As fn

L2(R3)�! f , then f̂n
L2(R3)�! f̂ and g0f̂n

L2(UR0)�!
g0f̂ . Consequently, g0f̂n

L1(UR0)�! g0f̂ and therefore g0f̂n
L1(R3)�! g0f̂ . Since Q�1 2 Lloc

1 (R3),

then Q�1g0f̂n
L1(R3)�! Q�1g0f̂ and also for any polynomial P � P (�; �; �): PQ�1g0f̂n

L1(R3)�!
PQ�1g0f̂ . Therefore, u

I
n uniformly converges to uI =

�
Q�1g0f̂

�
� on R3 with all its derivatives,
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@�+�+


@x�@y�@z

uIn

�!�! @�+�+


@x�@y�@z

uI as n �! +1 (see, e.g., [44]). As for the second term, obviously

g�0f̂n
L2(R

3)�! g�0f̂ and consequently, Q�1g�0f̂n
L2(R

3)�! Q�1g�0f̂ . Therefore, u
II
n

L2(R
3)�! uII as n �! +1.

Thus, we have justi�ed
Proposition 2.5. Let suppf � Din and f 2 L2(Din). For any fn 2 D(Din), the solution

un to the system Lun = fn (see (2.1b)) satis�es boundary conditions (2.2) and un 2 C1(R3).

Moreover, if the sequence fn 2 D(Din), n = 1; 2; . . ., converges to f in the sense of L2, fn
L2(R3)�! f ,

then each solution un can be represented as a sum of two terms, un = uIn + u
II
n , where uIn; u

II
n 2

C1(R3), uIn; u
II
n �! 0 as r �! 1, @�+�+


@x�@y�@z

uIn

�!�! @�+�+


@x�@y�@z

uI and uIIn

L2(R3)�! uII as n �!
+1. Here uI and uII are the same as in proposition 2.3.

2.3.2. Finite-Domain AP. To implement the DPM-based ABC's in practice (Section 3), we
will need to be able to actually calculate the solution to the auxiliary problem. Since the formulation
of the AP from Section 2.3.1 still involves in�nite domain, we replace it by the approximate �nite-
domain formulation that allows easy numerical solution.

As any linear system of PDE's with constant coe�cients, (2.16) admits the separation of
variables in the Cartesian coordinates. Therefore, we implement the Fourier transform in the
cross-stream and span-wise directions:

û(x; �; �) =
1

2�

1Z Z
�1

u(x; y; z)e�i�y�i�zdy dz(2.20a)

f̂(x; �; �) =
1

2�

1Z Z
�1

f(x; y; z)e�i�y�i�zdy dz(2.20b)

and obtain a family of one-dimensional systems

C
dû

dx
+
�
i�D + i�E � �2F � �2H � ��J

�
û = f̂(2.21)

that we consider on the entire line �1 < x < 1 for all (�; �) 2 R2. Each system (2.21) is
supplemented by the boundary condition

jû(x; �; �)j � const for �1 < x <1;(2.22)

which actually implies jû(x; �; �)j �! 0 as jxj �! 1 (compare to (2.2)) if there are no zeros
among the eigenvalues of the matrix Q � C�1

�
i�D+ i�E � �2F � �2H � ��J

�
. The only special

case, for which the decay of û(x; �; �) when jxj �! 1 cannot be guaranteed, is (�; �) = (0; 0);
therefore, we generally set the boundary conditions in the form (2.22). It, however, has been shown
in [13] that after the inverse Fourier transform the solution u will still vanish as jxj increases.

Note that although designated by the same notations, û and f̂ in formulas (2.20), as well as
Q, are not the same here as in the previous section. Indeed, the direction x has been left out when
calculating the Fourier transformations (2.20). This has been done because the natural spatial
anisotropy prescribed by the direction of the free stream exists in our model and therefore the
stream-wise coordinate x will be given a special treatment in the �nite-domain AP.
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Generally, the solution û(x; �; �) to problem (2.21), (2.22) can be found as a convolution

û(x; �; �) =

1Z
�1

G1(x� x0; �; �)f̂(x 0; �; �)dx 0(2.23)

with the corresponding one-dimensional fundamental solution G1(x; �; �). Then, the solution u to
Lu = f can be restored by means of the inverse Fourier transform, which eventually yields:

u(x; y; z) =
1

(2�)2

1Z Z
�1

eiy�+iz�
1Z

�1

G1(x� x0; �; �)

1Z Z
�1

f(x; y0; z0)e�i�y
0�i�z0dy0 dz0 dx0 d� d�:

(2.24)

Now, let us consider the new formulation of the AP that is periodic in both cross-stream and
span-wise directions. Speci�cally, we introduce the periods Y and Z for the coordinates y and z,
respectively, replace the Fourier integrals by the Fourier series, and instead of (2.24) obtain

uY Z(x; y; z) =
1

Y Z

kz=1X
kz=�1

ky=1X
ky=�1

eiy
2�ky

Y
+iz 2�kz

Z

1Z
�1

G1

�
x � x0;

2�ky
Y

;
2�kz
Z

�

1Z Z
�1

f(x; y0; z0)e�i
2�ky

Y
y0�i 2�kz

Z
z0dy0 dz0 dx0:

(2.25)

In our previous work (see [13, 17, 18]), we have analyzed the similar periodic formulations for the
two-dimensional case. It has been shown that for any �xed-size subdomain the periodic solution
will converge to the original nonperiodic solution as the period increases. These results can be
transferred to the case of three space dimensions without changes. Namely, let Y0 and Z0 be �xed.
Then,

uY Z(x; y; z) �! u(x; y; z) as (Y; Z) �! (+1; +1);

when �Y0
2

< y <
Y0
2
; �Z0

2
< z <

Z0
2
:

(2.26)

The convergence considered in (2.26) is typically uniform. The convergence for the derivatives can
also be established under some additional conditions (see [18]). Finally, as we are going to solve the
AP by a �nite-di�erence method (Section 3), certain relations between the period(s) and the grid
size(s) should hold, see [13, 17] for more detail. We also note that the convergence on a �xed-size
domain is su�cient for our purposes because for constructing the ABC's we will need to know the
solution of the AP only on some neighborhood of the arti�cial boundary.

Thus, we have replaced the original in�nite-domain AP by the new problem formulated on the
beam-shaped domain [�1; 1] � [�Y=2; Y=2] � [�Z=2; Z=2]. This domain is still in�nite in the
stream-wise direction. To make the entire formulation truly �nite, we �rst introduce some interval
[0; X ] so that [0; X ] � [�Y=2; Y=2] � [�Z=2; Z=2] � �1. Consequently, systems (2.21) will be

homogeneous outside [0; X ] for all (�ky ; �kz) �
�
2�ky
Y ; 2�kzZ

�
. Then, boundary condition
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2
64 Y

<�(k)<0

(Q(k) � �(k)I)

3
75 û(0;k) = 0;(2.27a)

prohibits the non-decreasing modes in the solution of the corresponding homogeneous system as
x �! �1 and boundary condition

2
64 Y

<�(k)�0

(Q(k) � �(k)I)

3
75 û(X;k) = 0;(2.27b)

prohibits the modes that increase as x �! +1. Therefore, boundary conditions (2.27) are equiv-
alent to (2.22) in the sense that the solution to (2.21), (2.27) on [0; X ] will be the same as
the corresponding fragment of the solution given by (2.23). In formulas (2.27), k � (ky; kz),

û(�;k) � û(�; �ky; �kz), Q(k) � C�1
�
i�kyD + i�kzE � �2kyF � �2kzH � �ky�kzJ

�
, �(k) are the

eigenvalues of Q(k), and I is the identity matrix of the appropriate dimension.
The formulation of the �nite-domain AP is therefore complete. For a given compactly

supported RHS f , suppf � Din, it consists of solving system (2.16) on the parallelepiped
[0; X ] � [�Y=2; Y=2] � [�Z=2; Z=2] with the periodicity boundary conditions in the y and z di-
rections and boundary conditions (2.27) in the x direction. As mentioned above, by increasing the
periods Y and Z one can make the solution to this AP arbitrarily close to the original nonperiodic
solution on any �nite �xed neighborhood of Din.

We will designate the Green's, i.e., inverse, operator of the �nite-domain AP by G so that if
Lu = f then u = Gf . We also introduce the space F 3 f of the RHS's for the �nite-domain AP
(8f : suppf � Din) and the space U 3 u of its solutions so that L : U 7�! F and G : F 7�! U .
Keeping in mind that the functions u 2 U approximate the solutions to the in�nite-domain AP of
Section 2.3.1 in the sense mentioned above, we will henceforth consider those u 2 U as satisfying
the appropriate boundary conditions at in�nity.

2.3.3. Generalized Potentials and Boundary Projections. Let us now introduce the
space of clear traces � . The elements � 2 � are the vector-functions de�ned on the arti�cial

boundary �; typically, for any u 2 U we may consider � =
�
u; @u@n

����
�
where n is the normal to �.

The concept of clear trace is delineated in [6, 7]. The operator Tr : U 7�! � that associates the
clear trace with each u 2 U is called the clear trace operator.

Let now some � 2 � be prescribed. One can always �nd a compactly supported function v
such that Tr v = �. Then, the truncated function f = (Lv)jDin

2 F can be a RHS for the
�nite-domain AP. The corresponding solution of the �nite-domain AP considered only on Dex is

called the generalized potential with the density �: P �
def
=
h
G
�
(Lv)jDin

�i���
Dex

. The generalized

potential can be shown to depend only on its density � and not on the choice of v (see [6, 7]).

The composition of operators P and Tr, P�
def
= Tr P , maps the space of clear traces onto

itself, P� : � 7�! � . This new operator is a projection, P 2
� = P�, and is called the generalized

boundary projection. Those and only those � 2 � that belong to the image of the generalized
boundary projection, � 2 ImP�, or in other words, satisfy the boundary equation with projection
� = P��, are actually the traces of some u 2 U .

In the next section, we construct the �nite-di�erence counterparts to the generalized potentials
and boundary projections and apply those to setting the ABC's.
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2.4. Computation of the DPM-based ABC's.

2.4.1. Formulation of the Di�erence AP. Let us introduce a Cartesian grid on the par-
allelepiped [0; X ]� [�Y=2; Y=2] � [0; Z=2] � �1. By virtue of symmetry (see Section 2.2 and, in
particular, formulas (2.14), (2.15)), we may consider only a half of the domain along the coordinate
z. The x-grid is uniform with the size hx: xm = mhx, m = 0; 1; . . . ;M , x0 = 0, xM = X . The
grids in y and z can also be uniform with the sizes hy and hz , respectively: yjy = �Y=2 + jyhy ,
jy = 0; 1; . . . ; 2Jy + 1, y0 = �Y=2, y2Jy+1 = Y=2, and zjz = �Z=2 + jzhz , jz = Jz ; . . . ; 2Jz + 1,
zJz = �hz=2, z2Jz+1 = Z=2. (For the z-grid, we use here the same indexing of nodes as if it would
be if we considered the entire interval [�Z=2; Z=2] rather than only its half [0; Z=2]. This is done
mostly to keep consistency in the notations.) However, as we expect to have better accuracy for
bigger periods Y and Z (see Section 2.3.2), it may be convenient for applications to keep the y-
and z-grids uniform only in the vicinity of Din and then stretch them away from the computational
domain. This will allow us to cover bigger periods with the same number of nodes. In so doing, we
can retain the same indexing for the nodes yiy and zjz but the grid sizes hy and hz will no longer
be constant. In all our computations (Section 3), we have actually used the stretched grids in the
y and z directions.

We designate the entire three-dimensional Cartesian grid
by N0, N0 � �

(xm; yjy ; zjz)
��m = 0; 1; . . . ;M; jy = 0; 1; . . . ; 2Jy + 1; jz = Jz ; . . . ; 2Jz + 1

	
. The

solutions uh 2 Uh of the di�erence AP will be de�ned on this grid. We also introduce an-
other Cartesian grid M0, on which we will de�ne the RHS's fh 2 Fh of the di�erence AP.
Compared to the nodes of the grid N0, the nodes of the new grid M0 are shifted half-size

in x: M0 �
n
(xm�1=2; yjy ; zjz)

���m = 1; . . . ;M; jy = 0; 1; . . . ; 2Jy + 1; jz = Jz ; . . . ; 2Jz + 1
o
, where

xm�1=2 � (m� 1=2)hx.
We discretize the operator L of (2.1) on the grid N0 with the second order of accuracy. The

�nite-di�erence scheme is centered with respect to the nodes (m � 1=2; jy; jz). To discretize @u
@x ,

we use the �rst-order di�erences in x, this ensures the second order of approximation because the
residuals are evaluated on the same semi-integer grid M0, on which the RHS's are speci�ed. For
the �rst derivatives @u

@y and @u
@z , we use the three-point second-order discretization and designate

the corresponding grid operators by Dy and Dz , respectively. The dimension of this operators
is the same as the dimension of the grid because they act on vector-functions u�;jy;� and u�;�;jz
componentwise. On the uniform grid, this discretization turns into the standard central di�erencing
as the central node drops out, but if the grid is stretched the discretization contains all three non-
zero coe�cients. The second derivatives @2u

@y2
, @2u

@z2
, and @2u

@y@z are discretized by the appropriate

compositions of the �rst di�erence derivatives; D2
y , D

2
z , and DyDz , respectively. We will designate

the discrete direct operator by Lh.
Let now uh � um;jy;jz and f

h � fm�1=2;jy;jz . Because of the periodicity in y,

u�;0;� = u�;2Jy+1;�; f�;0;� = f�;2Jy+1;�:(2.28a)

Also, because of the symmetry/antisymmetry with respect to z = 0 (see boundary conditions
(2.14), (2.15)) and periodicity in z,

ui�;�;jz = ui�;�;2Jz+1�jz ; f i�;�;jz = f i�;�;2Jz+1�jz ; jz = 0; 1; . . . ; Jz ; for i 6= 4;

ui�;�;jz = �ui�;�;2Jz+1�jz ; f i�;�;jz = �f i�;�;2Jz+1�jz ; jz = 0; 1; . . . ; Jz ; for i = 4:

(2.28b)

Again, whereas we formally enumerate the z-nodes from 0 to 2Jz + 1 in (2.28b), this formulas in
fact show how one can consider only half of these nodes instead.
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To replace the continuous transforms (2.20), we introduce the discrete transforms T (y) and
T (z) so that for each i:

ûi�;ky;kz =
jz=2Jz+1X

jz=1

jy=2Jy+1X
jy=1

T
(z)
kz;jz

T
(y)
ky;jy

ui�;jy;jz ;(2.29a)

f̂ i�;ky;kz =
jz=2Jz+1X

jz=1

jy=2Jy+1X
jy=1

T
(z)
kz;jz

T
(y)
ky;jy

f i�;jy;jz :(2.29b)

The operators T (y) and T (z) have the inverse that we denote by ~T (y) � T (y)�1 and ~T (z) � T (z)�1,
respectively, so that

ui�;jy;jz =
kz=JzX
kz=�Jz

ky=JyX
ky=�Jy

~T
(z)
jz;kz

~T
(y)
jy;ky

ûi�;ky;kz ;(2.30a)

f i�;jy;jz =
kz=JzX
kz=�Jz

ky=JyX
ky=�Jy

~T
(z)
jz;kz

~T
(y)
jy;ky

f̂ i�;ky ;kz :(2.30b)

We require that the operator T (y) diagonalize the �rst and consequently, the second di�erence
derivative with respect to y:

~T (y)DyT
(y) = diag

n
i�ky

o
; ~T (y)D2

yT
(y) = diag

n
��2ky

o
;(2.31a)

where �ky , ky = �Jy ; . . . ; Jy, are real. Similarly, we require that the operator T (y) diagonalize the
�rst and the second di�erence derivatives with respect to z:

~T (z)DzT
(z) = diag fi�kzg ; ~T (z)D2

zT
(z) = diag

n
��2kz

o
;(2.31b)

where �ky , kz = �Jz ; . . . ; Jz, are also real. From (2.31a) and (2.31b) it follows that

~T (z) ~T (y)DyDzT
(y)T (z) = �diag

n
�ky

o
diag

n
�kz

o
:(2.31c)

Clearly, the columns of the matrix T (y) should therefore be the eigenvectors ofDy and analogously,
the columns of T (z) should be the eigenvectors of Dz .

Note, in practical computations on the stretched grids (Section 3) the eigenvectors and eigen-
values of Dy and Dz are calculated with the standard IMSL subroutines. Although the resulting
bases are, generally speaking, not orthogonal, the accuracy provided by this calculations is high.
In fact, this accuracy far exceeds any requirements to the accuracy of ABC's that may originate

from the accuracy of the interior solver. The inverse operators ~T (y) � T (y)�1 and ~T (z) � T (z)�1

are also found with the help of the standard IMSL subroutines.
If, in particular, the grids in y and z are uniform, then T (y) and T (z) are reduced to the

well-known discrete Fourier transforms (from here on, the overbar � means complex conjugate):
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T
(y)
ky;jy

=
e�ikyjyhy

2�
Yp

2Jy + 1
p
2Jz + 1

; T
(z)
kz;jz

=
e�ikzjzhz

2�
Zp

2Jy + 1
p
2Jz + 1

;(2.32a)

~T
(y)
jy;ky

= �T
(y)
ky;jy

=
eikyjyhy

2�
Yp

2Jy + 1
p
2Jz + 1

; ~T
(z)
jz;kz

= �T
(z)
kz;jz

=
eikzjzhz

2�
Zp

2Jy + 1
p
2Jz + 1

:(2.32b)

Let us now consider a special class of grids, namely, yjy = �y2Jy+1�jy for jy = 0; . . . ; Jy and
zjz = �z2Jz+1�jz for jz = 0; . . . ; Jz . Obviously, all uniform grids belong to this class, for the
stretched grids it means symmetric stretching. Then, one can make sure that

T
(y)
�ky;jy

= �T
(y)
ky;jy

for ky = 0; . . . ; Jy;

T
(z)
�kz;jz

= �T
(z)
kz;jz

for kz = 0; . . . ; Jz ;

(2.33a)

T
(y)
ky;2Jy+1�jy

= �T
(y)
ky;jy

for jy = 0; . . . ; Jy;

T
(z)
kz;2Jz+1�jz

= �T
(z)
kz;jz

for jz = 0; . . . ; Jz;

(2.33b)

and also

~T
(y)
jy;�ky

= �~T
(y)
jy;ky

for ky = 0; . . . ; Jy;

~T
(z)
jz;�kz

=
�~T
(z)
jz;kz

for kz = 0; . . . ; Jz ;

(2.34a)

~T
(y)
2Jy+1�jy ;ky

= �~T
(y)
jy;ky

for jy = 0; . . . ; Jy;

~T
(z)
2Jz+1�jz;kz

=
�~T
(z)
jz;kz

for jz = 0; . . . ; Jz:

(2.34b)

For the discrete Fourier transform on uniform grids, relations (2.33) and (2.34) immediately fol-
low from (2.32a) and (2.32b), respectively; for the nonuniform grids these relations are veri�ed
experimentally.

Substituting (2.33) into (2.29b), taking into account relations (2.28) and also that fh is real,
we obtain for i 6= 4 (< means the real part):

f̂ i�;jky j;jkzj =

jy=2Jy+1X
jy=1

2
4 jz=2JzX
jz=Jz+1

�
2T

(y)
jkyj;jy

<T (z)
jkzj;jz

f i�;jy;jz

�
+ T

(y)
jkyj;jy

<T (z)
jkzj;2Jz+1

f i�;jy;2Jz+1

3
5 ;

f̂ i�;jkyj;�jkzj = f̂ i�;jkyj;jkzj; f̂ i�;�jky j;jkzj = f̂ i�;�jkyj;�jkzj =
�̂
f i�;jkyj;jkzj;

(2.35a)

and for i = 4 (= means the imaginary part):

f̂ i�;jky j;jkzj = i

jy=2Jy+1X
jy=1

jz=2JzX
jz=Jz+1

2T
(y)
jkyj;jy

=T (z)
jkzj;jz

f i�;jy;jz

f̂ i�;jkyj;�jkzj = �f̂ i�;jkyj;jkzj; f̂ i�;�jkyj;jkzj = ��̂f i�;jkyj;jkzj; f̂ i�;�jkyj;�jkzj =
�̂
f i�;jkyj;jkzj:

(2.35b)
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The relations similar to (2.35) can also be obtained for uh on the basis of formulas (2.28), (2.29a),
and (2.33). Furthermore, taking into account that uh is real and using formulas (2.30a) and (2.34)
we obtain for the inverse transform if i 6= 4:

ui�;jy;jz = 4
kz=JzX
kz=1

ky=JyX
ky=1

�
< ~T

(z)
jz;kz

< ~T
(y)
jy;ky

<ûi�;ky;kz �< ~T
(z)
jz;kz

= ~T
(y)
jy;ky

=ûi�;ky;kz
�
+

2
kz=JzX
kz=1

< ~T
(z)
jz;kz

< ~T
(y)
jy;0
<ûi�;0;kz+

2

ky=JyX
ky=1

�
< ~T

(z)
jz;0< ~T

(y)
jy;ky

<ûi�;ky;0 � < ~T
(z)
jz;0= ~T

(y)
jy;ky

=ûi�;ky;0
�
+

T
(z)
jz;0T

(y)
jy;0û

i
�;0;0

(2.36a)

and if i = 4:

ui�;jy;jz = �4
kz=JzX
kz=1

ky=JyX
ky=1

�
= ~T

(z)
jz;kz

< ~T
(y)
jy;ky

=ûi�;ky;kz + = ~T
(z)
jz;kz

= ~T
(y)
jy;ky

<ûi�;ky;kz
�

�2
kz=JzX
kz=1

= ~T
(z)
jz;kz

< ~T
(y)
jy;0=ûi�;0;kz :

(2.36b)

Usage of the transforms (2.35) and (2.36) instead of (2.29) and (2.30), respectively, allows us to
calculate only one fourth out of the total number of coe�cients, namely, those for ky = 0; 1; . . . ; Jy
and kz = 0; 1; . . . ; Jz. This obviously implies a four-fold speedup and four-fold shrinkage of the
storage requirements when implementing in practice the separation of variables for the di�erence
AP.

In the transformed space, instead of Lhuh = fh we obtain a family of one-dimensional systems:

Akûm;k +Bkûm�1;k = f̂m�1=2;k;

m = 1; . . . ;M; k � (ky; kz);

ky = 0; . . . ; Jy; kz = 0; . . . ; Jz;

(2.37)

where

Ak =
1

hx
C +

i�ky
2
D +

i�kz
2
E �

�2ky
2
F � �2kz

2
H � �ky�kz

2
J ;

Bk = � 1

hx
C +

i�ky
2
D +

i�kz
2
E � �2ky

2
F � �2kz

2
H � �ky�kz

2
J :

(2.38)

For each system (2.37), we have to specify the boundary conditions at m = 0 and m = M .
Analogously to the continuous boundary conditions (2.27), the boundary conditions for the discrete
system should explicitly prohibit the corresponding growing modes of the solution. This can be
achieved by setting
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2
64 Y

j�(k)j>1

(Qk � �(k)I)

3
75 û0;k = 0;(2.39a)

and

2
64 Y

j�(k)j�1

(Qk � �(k)I)

3
75 ûM;k = 0;(2.39b)

where Qk = A�1
k
Bk , �(k) are the eigenvalues of Qk, and I is the identity matrix of the appropriate

dimension.
The �nite-di�erence AP has thus been formulated completely. It consists of solving the discrete

system Lhuh = fh on the grid N0 with the RHS speci�ed on the grid M0. The boundary conditions
in the directions y and z are periodicity and symmetry, see (2.28). The boundary conditions in the
direction x are speci�ed by formulas (2.39) in the transformed space separately for each component
after the original systemLhuh = fh has been reduced to (2.37), (2.38) by the separation of variables
(2.35), (2.36). The methodology for solving systems (2.37), (2.38) with boundary conditions (2.39),
as well as the speci�c structure of these boundary conditions, are studied in the next section.

2.4.2. Solvability of the Di�erence AP. Let us �rst concentrate here on the incompressible
case, when the 4� 4 system matrices are given in (2.1b). For simplicity, we will temporarily omit
the indices k. If � � �ky 6= 0 or � � �kz 6= 0, then the solutions �s � �s(k) and es � es(k),
s = 1; . . . ; 4, of the problem Bke � �Ak = 0 are given by

�1 = �
 

1

hx
� �2 + �2

2Re

! 
1

hx
+
�2 + �2

2Re

!�1
= �2

�3 =

 p
�2 + �2

2
� 1

hx

! p
�2 + �2

2
+

1

hx

!�1

�4 =

 p
�2 + �2

2
+

1

hx

! p
�2 + �2

2
� 1

hx

!�1

e1 = [0; 0; ��; �]t

e2 =

�
0; 1;

�i�
Re

;
�i�
Re

�t

e3 =

"
�
q
�2 + �2 +

�2 + �2

Re
;
q
�2 + �2; �i�; �i�

#t

e4 =

"q
�2 + �2 +

�2 + �2

Re
; �
q
�2 + �2; �i�; �i�

#t

(2.40)

From (2.40) we see that we have to analyze two di�erent cases. In the regular case whenp
�2 + �2=2 � 1=hx 6= 0, none of the eigenvalues �s degenerate, the inverse A�1

k
exists, and the

eigenvalues/eigenvectors (2.40) are also the eigenvalues/eigenvectors of Qk. The determinant of
the Gram matrix constructed on the normalized eigenvectors es from (2.40) can be shown to be
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DetG =
4
�
1� �2+�2

Re2

�2
�
1 + �2+�2

Re2

���
1 + �2+�2

Re2

�2
+ 8

� :(2.41)

Therefore, if (�2+�2) 6= Re2 then the eigenvectors es are linearly independent and for
p
�2 + �2=2�

1=hx 6= 0 we can diagonalize the system (2.37):

S�1
k
QkSk = diag f�sg ; where Sk =

�
e1

je1j ;
e2

je2j ;
e3

je3j ;
e4

je4j
�
:(2.42)

Let us note that since �2 <� 1=h2y and �2 <� 1=h2z (hy and hz are the smallest grid sizes) then the

condition (�2 + �2) 6= Re2 appears not too restrictive. For example, the asymptotic width of
the plane viscous wake in the far �eld behind the body is � 1=

p
Re (see, e.g., [45]). Therefore,

to resolve this structure it is su�cient to have the grid sizes of order 1=
p
Re as well (Re is an

e�ective turbulent Reynolds number), which puts the operator Sk of (2.42) far away of the possible
singularity. We also note that in the formal inviscid limit 1=Re �! 0, the determinant DetG of the
Gram matrix (see (2.41)) becomes fully independent of the wavenumbers � and �, which essentially
means that the \extent of skewness" for the basis fesg will be constant.

The solution to the diagonalized system (2.37) is easy to �nd by marching those components,
for which �s � 1, from left to right and those components, for which �s > 1, from right to left. It
is also easy to make sure that boundary conditions (2.39a) essentially imply that the components,
for which �s > 1, are not speci�ed (i.e., can be arbitrary) at the left end of the interval and the
components, for which �s � 1 (those that would not decay as m �! �1), are zero at m = 0.
Similarly, boundary conditions (2.39b) mean that the components, for which �s � 1, are not
speci�ed (i.e., any value is admitted) at the right end of the interval and the components, for which
�s > 1 (those that would increase as m �! +1), are zero at m = M . Let us also note that
1=Re may be arbitrarily small but as long as it is positive, j�sj 6= 1 for all s. Consequently, we
have only growing and decaying modes and no constant or oscillating modes in the solution of
the corresponding homogeneous system. Therefore, in accordance with the results of [46] we have
arrived at

Proposition 2.6. Let �ky 6= 0 or �kz 6= 0; let also
q
�2ky + �2kz=2 � 1=hx 6= 0. Then,

system (2.37), (2.38), (2.1b) with boundary conditions (2.39) is uniquely solvable and well-
posed for any compactly supported RHS f̂m�1=2;k. The constant in the well-posedness estimate

kû�;kk � const



f̂�;k


 does not depend on M .

Note, the system (2.37), (2.38), (2.1b), (2.39) can also be solved using the methodology of [16].

The case
p
�2 + �2=2�1=hx = 0 requires special analysis. In this case, �3 = 0 and also formally

�4 = 1. In fact, however, it is easy to make sure that both matrices Ak and Bk are singular forp
�2 + �2=2� 1=hx = 0. Let us therefore consider a regular pencil of matrices Ak +�Bk (see, e.g.,

[47]). We can rewrite these pencil as follows: Ak+�Bk = (Ak �Bk)+(�+1)Bk � A0
k
+(�+1)Bk.

As A0
k
= 2

hx
C, this matrix is non-singular and therefore Ak + �Bk = A0

k

�
I + (�+ 1)A0

k

�1
Bk

�
.

The combination of matrices in the brackets can be diagonalized, which yields:
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Ak + �Bk =

A0
k
S0
k

2
66664
1 0 0 0

0
�
1
2 +

1
hxRe

�
+ �

�
�1
2 +

1
hxRe

�
0 0

0 0
�
1
2 +

1
hxRe

�
+ �

�
�1
2 +

1
hxRe

�
0

0 0 0 ��

3
77775S0k�1;

(2.43)

where S0
k
is the corresponding similarity transform. (It is easy to make sure that all the eigenvectors

are linearly independent so that non-singular S0
k
does exist.)

From representation (2.43) we conclude that there are still three components in the solution that
should be calculated by marching from left to right and one component that should be calculated
by marching from right to left. This obviously matches the structure of boundary conditions (2.39)
as the latter can also be multiplied from the left by a nonsingular matrix A0

k
. In fact, the pencil

Ak+�Bk has one zero elementary divisor that corresponds to marching from right to left, at least
one \in�nite" elementary divisor that corresponds to marching from left to right, and may have
either two �nite elementary divisors or another two \in�nite" elementary divisors that would also
correspond to marching from left to right. Clearly, any of these marching procedures will easily
lead to an M -independent estimate of the resulting solution via the prescribed RHS. Therefore, we
have justi�ed

Proposition 2.7. Let �ky 6= 0 or �kz 6= 0; let also
q
�2ky + �2kz=2 � 1=hx = 0. Then,

system (2.37), (2.38), (2.1b) with boundary conditions (2.39) is uniquely solvable and well-
posed for any compactly supported RHS f̂m�1=2;k. The constant in the well-posedness estimate

kû�;kk � const



f̂�;k


 does not depend on M .

Let us now mention that for the discrete Fourier transforms on the uniform grids �ky =

sin
�
2�kyhy

Y

�
=hy and �kz = sin

�
2�kzhz

Z

�
=hz . Then, to avoid the considerations that result in propo-

sition 2.7 and to restrict oneself by the case of proposition 2.6 only, one can impose the following
limitation on the grid sizes: h�2x > (h�2y +h�2z )=4. We also note that the general analysis of constant-
coe�cient ordinary di�erence equations based on the canonical forms of the corresponding pencils
of matrices can be found in work [48].

The analysis of the last remaining case, �ky = �ky = 0 () k = 0, is straightforward as
Q0 = �I and the solution of (2.37), (2.39) can therefore be found by marching all the components
from left to right. In accordance with the results of [46] and [16], the well-posedness constant in
this case is proportional to M .

For the compressible case (2.1c), the similar results also hold. However, the analytical expres-
sions of type (2.40) are generally hard to obtain, so the actual eigenvalues and eigenvectors must be
calculated numerically (we again use the standard IMSL subroutines). The critical value, for which

the eigen-basis becomes singular (see proposition 2.7) is now
q
�2ky + �2kz=2�

q
1�M2

0 =hx = 0.

We will designate the Green's, i.e., inverse, operator of the di�erence AP by Gh so that if
fh 2 Fh and Lhuh = fh then uh = Ghfh and uh 2 Uh.

2.4.3. Di�erence Potentials and Projections. Let Stm�1=2;jy;jz be the stencil of the dif-

ference operator Lh; according to Section 2.4.1, we use the �rst-order di�erences for the coordinate
x and the central-type di�erences and their products for the coordinates y and z. Let us also
introduce the following grid sets (the overbar �Din here means the set-theoretical closure):
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Fig. 2.2. Continuous arti�cial boundary �, grid boundary 
, collocation grid � on �, and ghost nodes �1 for a
typical three-dimensional con�guration.

Min
def
= M0

\
�Din; Mex

def
= M0

\
Dex;

Nin =
[

(m�1=2;jy;jz)2Min

Stm�1=2;jy ;jz ; Nex =
[

(m�1=2;jy;jz)2Mex

Stm�1=2;jy;jz ;


 = Nin

\
Nex:

(2.44)

By de�nition (2.44), Min and Mex do not have common nodes. The sets Nin and Nex already have
some common nodes because these sets are swept by the stencil Stm�1=2;jy;jz as it is applied to every
node from Min and Mex, respectively. The intersection of Nin and Nex is called the grid boundary

. It is actually a multi-layered fringe of nodes of the auxiliary Cartesian grid concentrated in the
vicinity of the continuous arti�cial boundary �. Similarly to the continuous case (Section 2.3.3), the
density of the generalized di�erence potential will be de�ned on the grid boundary 
. An example
of the grid boundary (actually, a few planar cross-sections of this set) for a typical con�guration
studied in this paper is shown in Figure 2.2.

The di�erence clear traces �
 2 �
 of the functions uh 2 Uh are now de�ned as merely the

contractions to the grid boundary, i.e., Trhuh
def
= uh

���


= �
 , Tr

h : Uh 7�! �
 .

Let now some �
 2 �
 be prescribed and vh be a grid function de�ned on N0 such that
Trhvh = �
 . Clearly, there are many functions vh that would meet this condition, for example

vh =

(
�
 on 
;
o on N0n
:(2.45)
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Then, consider the function

Fh 3 fh =
(
Lhvh on Min;
o on Mex;

(2.46)

where vh is de�ned by (2.45), and solve the di�erence AP with this RHS fh of (2.46). The resulting
solution considered only on Nex is called the generalized di�erence potential with the density �
 :

P h�

def
=
�
Ghfh

����
Nex

(2.47)

(fh in (2.47) is de�ned by (2.46)). Analogously to the continuous case (Section 2.3.3), the general-
ized potential P h�
 of (2.47) can be shown to depend only on its density �
 and not on the choice
of vh (if the latter di�ers from (2.45) but still Trhvh = �
), see [7].

The composition of operators P h and Trh, P h



def
= TrhP h, maps the space of the di�erence

clear traces onto itself, P h

 : �
 7�! �
 . This new operator is a projection, P h



2
= P h

� , and is called
the generalized di�erence boundary projection. Those and only those �
 2 �
 that belong to the
image of the generalized di�erence boundary projection, �
 2 ImP h


 , or in other words, satisfy the

di�erence boundary equation with projection �
 = P h

 �
 , are actually the traces of some uh 2 Uh.

Note, numerical veri�cation of the projection property P h


2
= P h


 is an ideal test for accuracy
of the solution of di�erence AP. In our practical computations for di�erent geometries on di�erent

grids, we have always been able to obtain for arbitrary �
 's:



P h



2
�
 � P h


 �




 < 10�9. This, in

particular, justi�es the usage of the stretched grids when solving the di�erence AP.
As mentioned before (Section 2.3.2), we consider the continuous functions u 2 U as satisfying

the appropriate boundary conditions at in�nity because the di�erence between the non-periodic
solution and its periodic approximation is controlled by Y and Z and can, in fact, be made as
small as initially prescribed. The discrete space Uh approximates the continuous space U , therefore
we consider those grid densities �
 that belong to ImP h


 , �
 2 ImP h

 as admitting the exterior

complement in the right sense. In other words, these and only these functions �
 admit such a

complement uhex
def
= P h�
 that satis�es the boundary conditions of the di�erence AP (see (2.28),

(2.39)); this complement can therefore be made arbitrarily close (near Din) to an original linearized
exterior solution; in the next section, it is used for setting the di�erence ABC's.

2.4.4. Global DPM-based Arti�cial Boundary Conditions. Having constructed the
procedure for calculating the generalized di�erence potentials and projections, we can now pro-
vide for a closure to the discretized Navier-Stokes system that is solved inside the computational
domain Din, i.e., obtain the ABC's. As mentioned in Section 2.2, the interior solvers typically
involve some sort of pseudo-time iterations. To make every step of the iteration procedure, we
need to know the previous-step solution everywhere on the grid, including the ghost nodes �1. If
these data are available, then on the next step we will know the solution everywhere except on
�1. Consequently, to advance another iteration we will have to supplement the missing data on �1.
This will be done by projecting the available boundary data at � onto the \right manifold", i.e.,
the one that admits the right exterior complement (see the previous section), and then calculating
this complement on �1. In so doing, we can obtain the missing relations between the values of the
solution on � and �1 every time the ghost nodes need to be updated.

First, let us introduce the intermediate collocation grids � and �1 on both surfaces � and �1.
An example of such � � � is shown in Figure 2.2. These grids are typically a few times coarser than
� and �1. Usage of the collocation grid on � is an element of general procedure of the di�erence
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potentials method [7]. Moreover, for the speci�c problem under study usage of the collocation grids
results in multi-fold acceleration of the computational procedure and also in memory savings if the
boundary conditions are implemented in the matrix form (see below).

Then, let us take �� =
�
u; @u@n

����
�
where n is the normal to � (these data are available from

inside the computational domain Din on every iteration) and, using the clustering R� on �, obtain
��. The latter procedure (clustering), in fact, implies local averaging or smoothening along �.
Furthermore, we drop normals from all nodes 
 to the surface � and interpolate �� with su�ciently
high order to the feet of these normals. The corresponding operation is denoted Rn; typically, we
use the bi-quadratic surface interpolation. Having obtained u and @u

@n at the feet of the normals,
we use the �rst two terms of the Taylor expansion (denoted �
) and obtain �
 :

�
 = �
RnR�

�
u;

@u

@n

�����
�
:(2.48)

Then, we calculate the potential P h�0
 for the density �
0

 = P h


 �
 and interpolate it (operationR�1)
from Nex to the nodes �1 � �1:

u
���
�1

= R�1P
h�0
 � R�1P

h�
 :(2.49)

The second equality in (2.49) holds because of the projection property of P h

 . Finally, the missing

values of the solution at the nodes �1 are obtained from u
���
�1

by means of interpolation along the

surface �1, which altogether yields the nonlocal DPM-based ABC's in the form

u

����
�1

= T

�
u;

@u

@n

�����
�
;(2.50)

here the operation T is composed of the operations (2.48), (2.49), and interpolation along �1. As
mentioned above, in the course of the iteration procedure boundary condition (2.50) is applied
every time we need to update the values of the solution at the ghost nodes �1. The implementation
of ABC's (2.50) can either be direct or involve preliminary calculation of the matrix T . In the
latter case, the runtime implementation of the ABC's (2.50) is reduced to a matrix-vector multi-
plication. Moreover, in this case we can do the �rst clustering R� and the last interpolation along
�1 separately, i.e., leave these operations out of the structure of T . Then, instead of (2.50) one can
write

u
���
�1

= T 0��;

where both the dimension of T 0 and its computational cost are many times smaller than those of
T from (2.50).

Let us also note that we need to know the potential only on some neighborhood of the surface
�1 (see (2.49)). At the same time, according to (2.45) and (2.46) the density of the potential di�ers
from zero only near 
. Therefore, for both direct T (y), T (z) (see (2.29)) and inverse ~T (y), ~T (z)

(see (2.30)) transforms we actually have to take into account only a few \non-zero" nodes out of
the total numbers of 2Jy + 1 and Jz + 1 along y and z, respectively. This e�ectively makes the
computational cost of these transforms to grow linearly rather than quadratically with respect to
2Jy + 1 and Jz + 1, and obviously implies a very substantial reduction of the required computer
resources.
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3. Numerical Results.

3.1. Two-Dimensional Summary. For the reason of completeness, we �rst brie
y comment
on the two-dimensional results from our previous work (see [14, 15, 18]). In that work, we have
calculated the subsonic and transonic viscous 
ows past single-element airfoils (NACA0012 and
RAE2822).

The two-dimensional computational domain is formed by the C-type curvilinear grid generated
around the airfoil. On this grid, the Navier-Stokes equations are integrated using the code FLOMG

by Swanson and Turkel [10, 11, 12]. The standard treatment of the external boundary in the code
FLOMG is based on the locally one-dimensional characteristics analysis, which may or may not be
supplemented by the point-vortex correction [32].

Basic conclusions that could be drawn from our two-dimensional numerical experience are the
following. The DPM-based ABC's are geometrically universal, algorithmically simple and easy to
implement along with the existing solver. For the large computational domains (30{50 chords of the
airfoil), the performance of the standard methods and the DPM-based ABC's is very close to one
another. As, however, the arti�cial boundary approaches the airfoil the discrepancy between the
corresponding solutions increases. The lift and drag coe�cients obtained on the basis of the two-
dimensional version of boundary conditions (2.50) deviate from their asymptotic (50 chords) values
much slighter (within fractions of one percent) than the coe�cients obtained with the local ABC's
do. In other words, the nonlocal DPM-based ABC's allow one to use much smaller computational
domains (as small as 2{3 chords) than the standard boundary conditions do and to still maintain
high accuracy of of the numerical solution. Moreover, if we compare three models: DPM-based,
point-vortex, and standard local (characteristics-based), then it turns out that the DPM-based
ABC's display the best performance for small computational domains, the performance of the local
characteristic boundary conditions for small domains is very poor, and the point-vortex boundary
conditions perform much better for the lift than they do for the drag coe�cient. This behavior
seems reasonable since the point-vortex model is a lift-based treatment.

We also note that for certain variants of computation the DPM-based ABC's may noticeably
speed up (by up to a factor of three) the convergence of the multigrid iterations, see [13, 14, 15].
Some discussion on combined implementation of the DPM-based ABC's with multigrid is contained
in [18].

3.2. Three-Dimensional Computations. The DPM-based boundary conditions (2.50)
have been combined with the interior Navier-Stokes solver and used for calculating viscous 
ows
around the ONERA M6 wing for di�erent regimes that range from very low to transonic Mach
numbers and include both attached and separated turbulent 
ows.

We use the NASA-developed code TLNS3D by Vatsa, et al. [21] to integrate the thin-layer
equations on the curvilinear C-O grid (see Figures 2.1 and 2.2) generated around the wing. The
code is based on the central-di�erence �nite-volume discretization in space with the �rst- and
third-order arti�cial dissipation. The steady-state solution is obtained by means of a pseudo-time
iteration procedure; the integration in time is done by the �ve-stage Runge-Kutta algorithm (with
the Courant number calculated locally) supplemented by the residual smoothing. For the purpose
of accelerating the convergence, the multigrid methodology is implemented; in our computations
we used three subsequent grid levels with V cycles; the full multigrid methodology (FMG) could
be employed as well. In addition, we use the preconditioning technique of [49] to improve the
convergence to steady state. We implement the DPM-based ABC's (2.50) only on the �nest level
of multigrid on the �nal FMG stage; the boundary data for coarser levels are provided by the
coarsening procedure. Moreover, even on the �nest level we implement the DPM-based ABC's only
on the �rst and the last Runge-Kutta stages, which has been shown to make very little di�erence
compared to the implementation on all �ve stages; the boundary data for the three intermediate
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stages are provided from the DPM-based ABC's on the �rst stage. Unlike the two-dimensional case,
the standard treatment of the external boundary in three dimensions (code TLNS3D) is based merely
on the locally one-dimensional characteristics analysis and extrapolation (as the point-vortex model
is not applicable).

All three-dimensional 
ows that we have analyzed are turbulent. In the near �eld (i.e., inside
Din), the Navier-Stokes solver is supplemented by a special turbulence model to account for the
corresponding phenomena. Depending on the speci�c 
ow variant, either an algebraic or a di�eren-
tial turbulence model can be employed. In the far �eld, we use Boussinesq's concept of the e�ective
turbulent viscosity, i.e., e�ective Reynolds number (see [15]). This simplest approach has been
found to produce accurate results when incorporated in the structure of the DPM-based ABC's.
The value of the Prandtl number for all the calculations was either Pr = 0:72 (air) or Pr = 1.

In all the cases below, the auxiliary Cartesian grids are stretched along the coordinates y and z.
The stretching typically starts outside �1; the stretching factors (we use the geometric progression)
vary between 1.07 and 1.1 for di�erent variants. The typical values of Y and Z that we have used
also vary between 20 and 30 sizes of Din in the cross-stream direction and 4 and 10 sizes of Din in
the span-wise direction. The uniform Cartesian grid in the vicinity of Din is always chosen so that
the distance between � and �1 is well resolved.

We should also emphasize that in spite of their nonlocal nature the DPM-based ABC's (2.50)
are geometrically universal. In other words, these boundary conditions can be obtained for the
boundary � of any irregular shape by means of the same computational procedure. This conclusion
directly follows from the previous considerations and has also been repeatedly corroborated in the
numerical experiments. Moreover, ABC's (2.50) appear easy to incorporate in the structure of the
existing 
ow solvers, which has been corroborated in practice as well, and which is very important
from the standpoint of applications. The issue of the computational cost of boundary conditions
(2.50) and some possible ways of its reduction will be addressed later on, in Section 3.2.4.

3.2.1. Low Mach Number Regime. We �rst consider a very low speed 
ow, M0 = 0:01,
which, in fact, is close to the truly incompressible case. Preconditioning [49] makes the analysis of
this 
ow possible with TLNS3D. The 
ow is turbulent with the molecular Reynolds number based on
the root chord of the wing Re0 = 11:7 � 106; the angle of attack is � = 3:06�; there is no separation
and the turbulence inside Din is simulated using the Baldwin{Lomax algebraic model, which is
based on the concept of mixing length.

Since the free-stream Mach number is so small, we have implemented here the incompressible
version of the nonlocal DPM-based ABC's (2.50) constructed on the basis of matrices (2.1b). In
Table 3.1, we present the results of calculations for two di�erent computational domains of the
\average radii" of 10 and 1.25 root chords of the wing, respectively (root chord means the chord
length at z = 0).

Table 3.1

ONERA M6: M0 = 0:01; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of Din 1.25 root chords 10 root chords

Dimension of the grid 197� 49� 33

Type of ABC's standard DPM standard DPM

Full lift, CL 0.2052 0.1954 0.1940 0.1939

Relative error 5.78% 0.77% 0% 0%

Full drag, CD � 100 0.695 0.685 0.681 0.681

Relative error 2.1% 0.58% 0% 0%

In both cases, we used the C-O type grids of the same dimension 197 � 49 � 33; for the small
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domain the grid was obtained by scaling down the bigger grid and was obviously �ner in the near
�eld. One can see that for the big domain the results (force coe�cients CL and CD) obtained using
both methods are very close to each other. However, as the domain shrinks the accuracy obtained
with the DPM-based procedure appears much better than the accuracy provided by the standard
methodology. In other words, the nonlocal DPM-based ABC's (2.50) allow one to essentially reduce
the size of the computational domain without compromising the accuracy. This con�rms that if
the structure of the far-�eld solution is correctly taken into account by means of the ABC's then
within a certain range of domain sizes the computed near-�eld solution becomes essentially domain-
independent. We also note that as the near-�eld grid for the small domain is �ner than for the big
domain then the associated truncation error can be expected smaller.

3.2.2. Subsonic Regime. The next case is a subcritical (i.e., fully subsonic) compressible

ow for M0 = 0:5. Here, the free-stream Mach number is already high enough to make the
compressibility e�ects very essential but on the other hand, it is still not too high so that the 
ow
remains locally subsonic throughout the entire domain. The angle of attack and the molecular
Reynolds number for this case are the same as for the previous one: � = 3:06�, Re0 = 11:7 � 106.
The 
ow is also fully attached and the turbulence model inside Din is algebraic (Baldwin{Lomax).

The DPM-based ABC's (2.50) for this case were constructed on the basis of non-symmetrized
matrices (2.1c). For this speci�c value of Mach number, M0 = 0:5, the \extent of non-symmetry" in

the systemmatrices (2.1c) still appears quite acceptable. However, for lowMach numbersM0
<� 0:1

treated in the compressible framework (unlike in Section 3.2.1), the usage of symmetrizer (2.3) and
matrices (2.4) can be recommended. On the other hand, we should note that in work [18] we
have been able to obtain accurate two-dimensional results for M0 = 0:01 without symmetrizing the
system matrices in boundary conditions.

In Table 3.2, we compare the results of calculations for three di�erent computational domains.

Table 3.2

ONERA M6: M0 = 0:5; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of Din 1.25 root chords 2 root chords 10 root chords

Dimension of the grid 197� 49� 33

Type of ABC's standard DPM standard DPM standard DPM

Full lift, CL 0.2218 0.2065 0.2185 0.2065 0.2081 0.2072

Relative error 6.58% 0.34% 5.0% 0.34% 0% 0%

Full drag, CD � 100 0.817 0.791 0.793 0.791 0.787 0.788

Relative error 3.8% 0.38% 0.76% 0.38% 0% 0%

Like in the previous case (Section 3.2.1), here the DPM-based ABC's produce much more accu-
rate solutions on the small computational domains than standard boundary conditions do. This
obviously amounts to either saving the computer resources while preserving the accuracy of compu-
tations or improving the accuracy while keeping the computational cost at the same level. Of course,
lower levels of the truncation error for �ner grids on the small domains can also be anticipated here
as in the foregoing low Mach number case.

3.2.3. Transonic Regime. Most of the standard test cases for 
ows around the ONERA M6
wing are transonic (see, e.g., the experimental work [50]). In such 
ows the free-stream Mach
number is su�ciently high so that the local speed exceeds the speed of sound in some bounded
region near the upper surface of the wing. This leads to the formation of a supersonic (i.e.,
supercritical) \bubble", which typically has a sonic-surface type upstream boundary and a shock-
wave type downstream boundary.
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Attached Flow. The �rst transonic case that we present is M0 = 0:84, � = 3:06�, Re0 =
11:7 � 106. In this case, the angle of attack � remains su�ciently small so that the weak shock
on the upper surface of the wing does not cause the 
ow separation. Therefore, we still use the
Baldwin-Lomax model for simulating the turbulence inside Din. An important di�erence compared
to the previously studied cases is that here we cannot bring the arti�cial boundary as close to the
wing as done in Sections 3.2.1 and 3.2.2. The reason is that our far-�eld treatment is purely subsonic
and therefore, the arti�cial boundary should not come to the boundary of the supercritical bubble
too close. Therefore, we ran our computations for two domains, the \radius" of the big one is still
about 10 root chords of the wing and the \radius" of the small one is about 3 root chords of the
wing. Unlike in the previous cases, here we constructed the C-O grids of di�erent dimension for the
domains of di�erent size; the smaller (3 root chords) grid is an exact subset of the bigger (10 root
chords) grid. This has been done in order to completely eliminate any in
uence that the change of
the grid in the near �eld may possibly exert on the calculated solution.

The nonlocal ABC's (2.50) for this case were again constructed on the basis of matrices (2.1c).
In Table 3.3, we compare the computed results (calculated lift CL and drag CD coe�cients) for
two di�erent types of ABC's on two di�erent domains.

Table 3.3

ONERA M6: M0 = 0:84; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of Din 3 root chords 10 root chords

Dimension of the grid 197� 49� 33 209� 57� 33

Type of ABC's standard DPM standard DPM

Full lift, CL 0.298�0.004 0.2798 0.2805 0.2786

Relative error 6.24%�1.43% 0.43% 0% 0%

Full drag, CD � 10 0.168�0.008 0.1537 0.1542 0.1531

Relative error 8.95%�5.19% 0.39% 0% 0%

For the small computational domain, the DPM-based ABC's again clearly outperform the standard
method from the standpoint of accuracy. We also note that in this case the total number of nodes
in the bigger grid is about 25% more than in the smaller grid, which obviously implies an accordant
increase of the associated cost of computations.

Even more important, for the transonic case the DPM-based ABC's in
uence not only the �nal
accuracy of the solution but also the convergence rate of the iteration procedure employed inside
Din. Namely, for the standard ABC's the multigrid iterations on the small computational domain
converge noticeably slower than they do for the DPM-based ABC's. In fact, for the same 500 V-
cycles on the �nest multigrid level, we simply have not been able to obtain a stable solution for the
3 root chords domain with the standard boundary conditions. That's why the corresponding data
in Table 3.3 are given with the error bands indicated. The convergence history for the transonic
computations on the 3 chords domain is given in Figure 3.1a for the residual of the continuity
equation and in Figure 3.1b for the number of supersonic points in the domain. Note, the latter
quantity is deemed very sensitive for calculation of the transonic 
ows.
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Fig. 3.1a. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 3:06�. Convergence history for the residual of the
continuity equation. \Average radius" of Din is 3 root chords of the wing; the dimension of the grid is 197� 49� 33.
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Fig. 3.1b. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 3:06�. Convergence history for the number of
supersonic nodes in the domain. \Average radius" of Din is 3 root chords of the wing; the dimension of the grid is
197 � 49� 33.

From Figures 3.1 one can easily see that the di�erence in the multigrid convergence rates for the
di�erent types of ABC's can be as big as approximately a factor of three.

The history of convergence of the same two quantities for the big (10 root chords) computational
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domain is presented in Figures 3.2.
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Fig. 3.2a. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 3:06�. Convergence history for the residual of the
continuity equation. \Average radius" of Din is 10 root chords of the wing; the dimension of the grid is 209�57�33.
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Fig. 3.2b. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 3:06�. Convergence history for the number of
supersonic nodes in the domain. \Average radius" of Din is 10 root chords of the wing; the dimension of the grid is
209 � 57� 33.

We see that that in this case the DPM-based ABC's also provide for some convergence speedup,
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although the di�erence between the two methodologies appears less dramatic. This seems reason-
able because one could generally expect that the bigger the computational domain, the smaller is
the in
uence that the external boundary conditions exert on the numerical procedure.

Let us also note that on the small (3 root chords) domain the two algorithms apparently
converge to quite di�erent solutions (this is most clearly seen in Figure 3.1b), whereas Figure 3.2b
allows one to assume that on the big (10 root chords) domain the �nal solutions are close to one
another. The data from Table 3.3 corroborate these conclusions. This behavior of the solution again
�ts into the aforementioned concept that the overall impact of the ABC's on the computational
algorithm decreases as the domain enlarges.

Separated Flow. When one increases the angle of attack � in the transonic regime, the 
ow
pattern changes. The shock on the upper surface of the wing becomes stronger. Since the chord
length of the wing decreases span-wise as z increases (see Figure 2.1), then the stream-wise size
of the supersonic bubble decreases as well, and eventually the upstream sonic surface and the
downstream shock wave meet somewhere in the area close to the wingtip. For su�ciently strong
shocks this, in particular, produces 
ow separation on the upper surface of the wing. We have
analyzed the separated 
ow of this type for M0 = 0:84, � = 5:06�, Re0 = 11:7 � 106.

The separation zone on the upper surface of the wing for this case is relatively small, the 
ow
fully re-attaches before the trailing edge so that no phenomena associated with the separation are
present in the wake. However, the simulation of such 
ows already requires more sophisticated
turbulence models inside the computational domain; we have used the the two-equation Menter's
model [51]. Moreover, it requires much �ner grids in the near �eld than the simulation of the
attached 
ows does.

As in the previous transonic case, the global ABC's (2.50) are constructed here on the basis of
matrices (2.1c). The computations are conducted for two di�erent domains of the \average radii"
of 3 and 10 root chords of the wing, respectively, on the grids of the same dimension 193� 49� 33;
the smaller grid is obtained by scaling down the bigger grid (analogously to Sections 3.2.1 and
3.2.2). In Figure 3.3, we present the distribution of the pressure coe�cient

Cp =
p� p0
1
2�0u0

2

on the upper and lower surfaces of the wing in the cross-section z = const at the 90% of semi-span.
The 90% of semi-span station corresponds to the area of developed separation. The three solutions
that we have computed in this case are for the global DPM-based ABC's on the 3 and 10 root
chords domains and standard ABC's on the 10 chords domain. These solutions are compared in
Figure 3.3 against the experimental data.

From Figure 3.3 we conclude that all three numerical solutions very well match one another
and also match the experimental data to a reasonable degree of accuracy. We also emphasize
that analogously to the previous cases, the DPM-based global ABC's (2.50) are quite capable of
generating an accurate numerical solution on the small domain for this separated 
ow case. On
the other hand, unlike in the previous cases, the standard ABC's are simply unable to produce
a convergent solution on the 3 root chords computational domain for the � = 5:06� separated

ow around the ONERA M6 wing. In other words, the multigrid algorithm with the standard
ABC's fails to converge on the small computational domain. Let us recall that for an easier case of
� = 3:06� the convergence of the standard procedure on the small domain was only slowed down
but not completely destroyed. The history of convergence of the residual of continuity equation for
the case � = 5:06� on the small domain is presented in Figure 3.4a.
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Fig. 3.3. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 5:06�. Surface pressure distribution at the 90% of
semi-span (x=c: x is the coordinate calculated from the leading edge, c is the local chord length). Dimension of all
grids is 193 � 49� 33.
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Fig. 3.4a. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 5:06�. Convergence history for the residual of the
continuity equation. \Average radius" of Din is 3 root chords of the wing; the dimension of the grid is 197� 49� 33.
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At the same time, on the big (10 root chords) domain both algorithms for the � = 5:06� case
converge at the same rate, see Figure 3.4b.
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Fig. 3.4b. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 5:06�. Convergence history for the residual of the
continuity equation. \Average radius" of Din is 10 root chords of the wing; the dimension of the grid is 197�49�33.

Figures 3.3 and 3.4 allow us to conclude that the nonlocal DPM-based ABC's (2.50) not only
speed up the convergence of the multigrid iterations but are generally capable of increasing the
robustness of the entire numerical procedure.

3.2.4. Computational Cost of the DPM-based ABC's. In all the three-dimensional
computations described above, the DPM-based ABC's were implemented directly, without com-
puting the matrix of operator T from (2.50). By applying the new procedure only on the �rst
and the last Runge-Kutta stages and only on the �nest multigrid level, the total number of the
required calculations of generalized potential has been brought to a minimum. In so doing, the
average cost of application of the DPM-based ABC's (2.50) adds about 20{25% of the CPU time
to the cost of the same procedure with the standard (characteristics-based) boundary conditions.
This extra expense is not high (taking into account the improvement of accuracy); moreover, it can
often be compensated for and even noticeably prevailed over by the convergence acceleration and
the reduction of the domain size. Besides, to explicitly decrease the computational cost associated
with the DPM-based ABC's we plan on the future use of the entry-wise interpolation of boundary
operators (see [22]) and/or the multiresolution based methodologies (see [20, 22]). We expect that
the latter can also be employed when implementing the DPM-based ABC's for multi-block grids.

4. Conclusions. The new global ABC's for calculating steady-state external viscous 
ows in
three space dimensions have been constructed on the basis of the di�erence potentials method. The
approach generalizes and extends our previous two-dimensional results.

The new ABC's are capable of greatly reducing the size of the computational domain (compared
to the standard methods) while still maintaining high accuracy of the numerical solution. This size
reduction amounts to either the possibility of re�ning the grid in the near �eld, which potentially



38 S. V. TSYNKOV

leads to increasing the accuracy, or usage of the smaller-dimension grids while keeping the accuracy
at the same level. Moreover, the DPM-based ABC's may noticeably speed up the convergence of
the multigrid iterations and generally improve the robustness of the entire numerical procedure.
Finally, the new boundary conditions appear geometrically universal and easy to incorporate in
the structure of the existing 
ow solvers. The properties of the new ABC's have been corroborated
experimentally by computing the subsonic and transonic 
ows past the ONERA M6 wing using
the NASA-developed code TLNS3D.
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